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We show that the distortionless tunneling of electromagnetic pulses through a barrier is a quasistatic
process in which the slowly varying envelope of the incident pulse modulates the amplitude of a
standing wave. For pulses longer than the barrier width, the barrier acts as a lumped element with
respect to the pulse envelope. The envelopes of the transmitted and reflected fields can adiabatically
follow the incident pulse with only a small delay that originates from energy storage. The theory
presented here provides a physical explanation of the tunneling process and resolves the mystery of

apparent superluminality.
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It has been more than 70 years since MacColl sug-
gested that there is no appreciable delay in the trans-
mission of a tunneling wave packet through a potential
barrier [1]. Yet, to this day, the dynamics of the tunneling
process remains shrouded in mystery and mired in con-
troversy as the idea of instantaneous propagation violates
all our cherished notions of causality [2]. Experimental
observations of apparent superluminal tunneling are usu-
ally presented with a disclaimer that no violation of
causality has occurred and that a mere reshaping of the
wave packet is sufficient to explain the observed phenom-
ena [2-5]. Notwithstanding these explanations, there
remains a deep unease regarding the lack of a truly
physical description of the tunneling process that explains
all the paradoxical effects. This is especially true in those
experiments where no reshaping of the transmitted wave
packet is apparent to the naked eye.

In this paper, we make the following key point: True
tunneling without distortion is a quasistatic process in
which the output intensity adiabatically follows the input
intensity with a small delay due to energy storage in the
barrier. Quasistatic conditions obtain whenever the pulse
envelope varies slowly compared to the transit time of
light across the barrier. Thus, the barrier acts as a lumped
circuit with respect to the pulse envelope [6]. Indeed, in
all the experiments in which tunneling without distortion
has been observed, the pulse lengths have been several
times larger than the barrier width. Such hitherto mysti-
fying phenomena as the ‘“Hartman effect” [7], in which
the tunneling time becomes independent of length for an
opaque barrier, are easily explained in the context of
quasistatics and energy storage [8]. While we present
results for electromagnetic tunneling, the well-known
analogy between classical tunneling and quantum-
mechanical tunneling means that the tunneling of par-
ticles can be understood in the same manner [2,9].

To be specific, we consider propagation through a one-
dimensional periodic dielectric structure (photonic band
gap structure) such as has been used in several tunneling
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experiments [3—5]. The results, however, apply to other
tunneling situations such as in constricted waveguides
[10] and in frustrated total internal reflection. The refrac-
tive index of the periodic structure is of the form

n(z) = ng + ny cos(2Byz), (1)

where n; < ng, By = ngwg/c is the Bragg wave number,
and w is the carrier angular frequency that satisfies the
Bragg condition for the structure. The periodic structure
extends from z = 0 to z = L and is embedded in a homo-
geneous region of refractive index ny. The complex elec-
tric and magnetic fields within the structure are given by

E(z,1) = E.(z, t)e'Por=@) + E_(z, 1)e”Boztead)  (2)

H(z,t) = (1/9)[E,(z, t)e!Poz=@0) — E_(z, 1)e~Boztwon],
3)

where £, and E_ are the forward and backward compo-
nents of the field envelopes, and n = \/u/ ¢ is the intrin-
sic impedance of the unperturbed medium. Within the
slowly varying envelope approximation, use of Eqgs. (1)—
(3) in Maxwell’s equations leads to the following
coupled-mode equations for the forward and backward
fields [11]:

0EL 10E-
198
9z v ot

— +ikE-. 4)

Here « = mn;/A, describes the coupling between for-
ward and backward waves and v = c¢/ng is the group
and phase velocity in the unperturbed medium, assumed
dispersionless. It should be noted that the carrier waves
expli(Boz * wyt)] are solutions of the homogeneous wave
equation for the lossless unperturbed medium and are
always propagating modes. The envelope functions modu-
late the amplitude of these carrier waves and determine
how much of the carrier will be transmitted by the
barrier.
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To elucidate the physics of the tunneling process, we
first assume an input sinusoidal envelope modulation of
the form E, (0, t) = E,cos{)t, with ) < w,, as befits a
modulation, and impose the condition E_(L, r) = 0. With
these boundary conditions, the sinusoidal steady state
solutions (i.e., after transients have died out) of Eq. (4) are

_ Ejcose _ _
E (z1)= coshyL {coshy(z L)cos(Qt — ¢)
+ 2sinhy(z — L)sin(Qt — g{))},
yvu
(5a)
E_(z,1) = — [M }sinhy(z — L)sin(Qt — ¢),
vy coshyL
(5b)
where y = 4/k? — (Q1/v)? and the phase shift is

¢ = tan" '[(Q)/yv) tanhyL]. 6)

Here we have assumed () < kv so that the envelope
modulation is below cutoff. This implies that the period
of the modulation must satisfy the requirement 7 >
(27/kL)T,,, where T,. = L/v is the transit time through
the unperturbed medium. For ‘“opaque” barriers with
reasonable transmission (1 < kL = 6), true tunneling
thus requires that the envelope period (and, hence,
pulse length) exceed the transit time. This is what
defines lumped-circuit behavior and the domain of quasi-
statics [6].

These driven solutions correspond to envelope stand-
ing waves oscillating at the same frequency as the input
but with phase lags of ¢ and ¢ + /2. The cosh and sinh
functions are normal modes of the finite barrier, and as a
result they move up and down in their entirety in response
to the input modulation. In doing so, they instantaneously
modulate the carrier waves throughout the barrier. The
phase of each mode is determined by the coupling and by
the boundary conditions and is established during the
transient stage of duration 7 ~ 27/kv, a time related to
the Q of the barrier. Since the envelope does not propa-
gate in the sinusoidal steady state, the phase shifts seen
here are not due to propagation but are a result of the
reactive nature of the coupling and of any impedance
mismatch at the boundaries of the barrier. As a result of
these phase shifts, the peaks of the forward and backward
envelope modulations are delayed in time with respect to
the driving modulation. This delay is the group delay or
envelope delay (also referred to as the phase time) and is
given by d¢/dQ). For the transmitted [Ep(L, )] and
reflected [E(0, 1)] fields, we find the same group delay:

do tanhk L

=" = . 7
Td dQ) 0=0 KV ()

We emphasize that this is not a propagation delay since the
envelope does not propagate when the modulation fre-
quency is below cutoff. The behavior is similar to that of
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an RC (resistance-capacitance) high-pass filter with a
time constant 74, The barrier is acting as a lumped
capacitor with coupling to the outside world providing
an effective dissipation.

In the limit L — oo, Egs. (5) reduce to

E (z,1) = Eye” "* cos{)t, (8a)
E_(z,1) = Ege” "*sin(Qt — ¢). (8b)

The normal modes of the infinite structure are pure ex-
ponential functions which do not depend on length since
they never see the exit. Inside the barrier, the forward
envelope simply oscillates up and down in phase with the
input modulation. Since there is no dissipation, the driv-
ing force E, does no work and, hence, in the sinusoidal
steady state, the forward envelope is everywhere in step
with the input modulation, including at the distant
reaches of this very long barrier. The backward wave,
on the other hand, is driven not directly by the input
modulation but by scattering from the forward wave and
is related to it through spatial and temporal derivatives. It
therefore oscillates with a phase shift relative to the input.
This is a coupling induced phase shift that depends on the
spatial distribution of the forward wave.

The phase shifts and delays seen here can be related to
energy storage within the barrier. Figure 1 shows the
electric field pattern over a few optical cycles for a steady
state envelope in a finite length barrier. Interference be-
tween forward and backward carrier waves sets up a
standing wave within the barrier. This standing wave is
a complete standing wave in the front part of the barrier
where the backward wave amplitude is nearly equal to
that of the forward wave. As with standing waves on a
transmission line, the spatial patterns of the electric and
magnetic fields are in phase quadrature. Energy also
sloshes back and forth in time between electric and
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FIG. 1. The electric and magnetic fields in the barrier over a
few cycles of the optical carrier wave. Here 8oL = 207 and
kL = 4. The envelopes are in steady state.
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magnetic forms but does not propagate. Near the exit of
the barrier, however, the backward carrier wave, since it
starts with zero amplitude at z = L, is much weaker than
the forward wave, and therefore the latter can exist as a
traveling wave in this region. In a finite length barrier, the
coupling to the unperturbed region at the exit provides an
effective dissipation that makes it possible for real power
to be transmitted. This alters the ratio of stored reactive
power to real power transport and thereby introduces a
phase shift in the transmitted forward wave.

Poynting’s theorem relates the time rate of change of
the total instantaneous stored energy U to the incident
(P;), reflected (P,), and transmitted (P,) power:

Y — b0~ P00 - P ©)
By using Eqgs. (5) in (9), we find that the peaks of the total
stored energy lag the peaks of the incident intensity by
74/2. The delay 7, between an incident peak and a
reflected or transmitted peak relates to the time it takes
for energy to be stored and then released. For a very long
barrier, an integration over the length L and area A yields
the time-averaged stored energy

(U) = %SE%A(I —e L) /y, (10)

which, for L — oo, reduces to § e EJALgy, where Lo =
1/7y is the effective length of the barrier, the distance at
which the field drops to 1/e of its initial value. The
Hartman effect is precisely a result of the fact that the
stored energy (which is proportional to the group delay)
becomes independent of length, residing primarily in the
region z < L. [8]. Note that for a very slow modulation
such that () < kv, the delay approaches 1/«v, which is
the inverse of the cutoff angular frequency of the barrier.

For narrowband pulses, the tunneling process is essen-
tially a quasisteady state phenomenon in which the field
envelope throughout the barrier can follow the slow
variations of the input envelope with little phase lag
(after the initial transient). In this quasistatic limit, we
can obtain approximate solutions to the coupled-mode
equations for arbitrary input pulse profiles by expanding
the complex amplitudes of the sinusoidal solutions to first
order in the frequency parameter /v and performing
an inverse Fourier transform. The resulting solutions are

X {A(t) - %[tanhKL + tanhk(z - L)]A’(t)},
(11a)
E_(s1)=— iW{A(r) - mr:(h:LA’(t)}. (11b)

Here A(7) is the envelope of the incident pulse as measured
at z = 0 and the primes denote derivatives with respect to
time. These quasistatic solutions are in excellent agree-

023901-3

ment with the numerical solutions of the coupled-mode
equations.

To follow a pulse as it tunnels through a barrier, we
numerically integrate Eq. (4) along forward and back-
ward characteristics. The input pulse is Gaussian of the
form

A(t) = E(0,1) = exp[—(t — 10)*/27;],  (12)

with time measured in units of the transit time and with
7, = 3 chosen to satisfy the narrowband condition.
Figure 2(a) shows the incident pulse, the transmitted
(tunneled) pulse, and the reference pulse, i.e., a pulse
that travels the distance L in a barrier-free region. It is
seen that the pulse is transmitted with no distortion and
that its peak at the exit is delayed with respect to the peak
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FIG. 2. (a) Incident (dotted), transmitted (solid line), and
reference (dashed) pulses for the barrier of strength xL = 4.
The input narrowband pulse has normalized width 7, = 3 and
a peak at 1, = 57,,. The tunneled pulse is undistorted, has a
peak intensity of 1.4 X 1073, and is delayed by 1!, = 0.25.
(b) Snapshots of the spatial distribution of energy density in
the tunneling pulse. These are taken at time instants from ¢ =
13 to ¢ = 17 in steps of 0.25 around the peak of the incident
pulse. Note that the entire distribution moves up and down
in phase.
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FIG. 3. (a) Incident (dotted), transmitted (solid line), and

reference pulse (dashed) for a short pulse of width 7, = 0.1.
(b) Snapshots of spatial distribution of energy density in the
“tunneling” pulse of width 7, = 0.1.

at the input by a time ¢, = 0.25, which is exactly the value
predicted by the phase time.

The rather prompt appearance of the peak at the output
should not be cause for concern. The incident peak did not
propagate to the output. In fact, under these quasistatic
conditions the pulse peak never even enters the barrier
since the energy density has no peak in the interior of the
interval (0, L). We can check this by taking snapshots of
the spatial distribution of the field energy density u(z, r) o«
[IE.(z, )| + |E_(z, 1)|*] in the barrier at instants of time
just before the peak, right at the peak, and just after the
peak of the incident pulse. Figure 2(b) shows the energy
density distributions taken at normalized times ¢ =
13—17 in steps of 0.25, based on the numerical solutions
of Eq. (4). The intrabarrier energy density decreases
monotonically from the input to the output even as the
incident pulse goes through a maximum. There is no
sense in which the input peak travels to the output and,
hence, input and output peaks are not connected by causal
propagation as noted by Landauer [9]. The entire envelope
moves up and down as a semirigid entity in response to
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the input modulation. Near the exit, the energy density
deviates from its exponential decay as the fields adjust to
the loading conditions at that end. Clearly, the duration of
the tunneling process is just the length of the input pulse.

The behavior of narrowband pulses seen here is in
marked contrast to that of broadband pulses that violate
the adiabatic criterion. Figures 3(a) and 3(b) show the
propagation of a pulse of normalized width 7, = 0.1
through the same structure. First, it is noted that the
transmitted pulse suffers significant distortion because
its spectrum extends over regions of frequency where
the magnitude of the transmission function is not uni-
form. The overall propagation is luminal since it is domi-
nated by frequency components that lie outside the stop
band. Second, as shown in Fig. 3(b), snapshots taken at
different instants show the peak in energy density ac-
tually traveling through the barrier. This pulse, however,
is not tunneling but “flying over” the barrier because it
has significant spectral content in the filter pass bands.
The important point is that for broadband pulses one can
track the propagation of a peak through the barrier,
whereas the peak of a narrowband pulse does not even
enter the barrier.

In conclusion, we have shown that the apparent super-
luminal tunneling of pulses is a quasistatic phenomenon
in which the output envelope adiabatically follows the
input. The incident peak does not actually propagate to
the exit which means that the notion of a transit time is
meaningless. The input field merely modulates the ampli-
tude of a standing wave created through the interference
between forward and backward waves. When properly
interpreted in this context, no superluminal transport is
seen.
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