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Revised a* Term of Lepton g — 2 from the Feynman Diagrams Containing
an Internal Light-By-Light Scattering Subdiagram
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The a* contribution to the lepton ¢ — 2 from a gauge-invariant set of 18 Feynman diagrams
containing a light-by-light scattering subdiagram internally has been reevaluated by a method
independent of the previous approach. Comparison of two methods revealed a program error in the
first version. Correcting this error, the contributions of these 18 diagrams become —0.990 72(10)(a/ m)*

and —4.43243(58)(a/m)* for the electron and muon g —

2, respectively. The correction is not large

enough to affect the comparison between theory and experiment for the muon g — 2, but it does alter
the inferred value for the fine structure constant a~! by 6 ppb.
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Precise theoretical and experimental values of lepton
anomalous magnetic moments [a; = (g; — 2)/2] provide
one of the most stringent tests of QED [1]. In case of the
electron (positron), the experimental value did reach the
precision of 4.3 ppb [2]. Currently, the theoretical uncer-
tainty is dominated by that of the fine structure constant
«. The most precise « available now is from the atom
interferometry experiment [3], which has 7.4 ppb preci-
sion. Since the muon anomalous magnetic moment a,, is
sensitive to short-distance physics, high precision mea-
surement (1.3 ppm) of a, at Brookhaven National
Laboratory may be able to open the first window to
“new physics” [4]. Before taking the discovery of new
physics in the muon g — 2 seriously, however, we must
make sure that the old physics, namely, the standard
model, is known with sufficiently high precision.

The largest source of theoretical uncertainty (0.7 ppm)
for a,, is the hadronic contribution [5,6]. Unfortunately,
we are currently unable to deal with the hadronic correc-
tion from first principles because of the nonperturbative
nature of QCD. On the other hand, the QED correction
can be treated precisely by perturbation theory. In order
to achieve the precision comparable to that of measure-
ments, the QED calculation for lepton g — 2 must include
terms of up to eighth order of perturbation theory.
Leading contributions of tenth order are also relevant
for a, [7.8].

The purpose of this Letter is to correct a program error
in the previous calculation of the gauge-invariant set of
18 Feynman diagrams contributing to the a* QED term
[7]. This was accomplished by constructing alternative
forms of integrals for these diagrams. As a consequence,
all 891 Feynman diagrams contributing to the eighth-
order term of a,, and additional diagrams contributing
to a, — a,, have now been verified by independent cal-
culations and/or checked by analytic comparison with
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lower-order integrals. This enables us to pursue with
confidence an order of magnitude improvement in nu-
merical precision of all a* terms of a » and a,. The results
will be reported shortly elsewhere [9,10].

Let us now describe how the error was discovered and
corrected. The contribution of the QED diagrams to a,
can be written in the general form

a,u,(QED) = Al + AZ(m,u,/me) + AZ(m,u,/m'r)
+ A3(m,u,/me’ m,u,/m’r)’ (1)

where m,, m,, and m, are the masses of the electron,
muon, and tau, respectively. A similar equation holds
for a,. Throughout this Letter, we use the values m, =
0.510998902(21) MeV/c?, m, = 105.658 357(5) MeV/
c2, and m, = 1776.99(+29, —26) MeV/c? [11].

The renormalizability of QED guarantees that the
functions A;, A,, and A5 can be expanded in power series
in /7 with finite calculable coefficients:

A =AP @ + AP @2 + AV (@3 + ., i=123.

2

A(lz), A(14), and A(G) are known analytically [12]. Most
terms contrlbutlng to A have not yet been obtained by
analytic means. The current uncertainty in the value of
A(lg) is a consequence of the fact that, at present, it must be
obtained by numerical integration. Its precision is being
improved by an extensive computer calculation right now
[9]. For the purpose of evaluating a,, (QED), however, it is
sufficient to use A( ) derived from the measured value of
the electron anomaly a, [13] corrected for small contri-
butions of muon, hadron and weak interactions. The
terms A( )(m /m,) and A(6)(m /m,) are known exactly
[14]. The s1tuat10n is quite dlfferent forA (m /m,) since
most terms contributing to it are known only by numeri-
cal means.
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There are altogether 469 Feynman diagrams contribu-
ting to A;S)(m#/me). Of these diagrams, 343 have been
checked by more than one independent method, some of
which even being analytic. The other 108 diagrams, all of
which contain an external light-by-light scattering sub-
diagram, have been checked analytically by comparison
with the exactly known sixth-order vertices [10]. Un-
fortunately, this was not the case for the remaining 18,
all generated by inserting a light-by-light scattering sub-
diagram internally in a fourth-order vertex diagram (see
Fig. 1). Here external and internal mean whether one of
the attached photon lines represents an external magnetic
field or not.

These 18 diagrams form a gauge-invariant set and
share the same basic algebraic structure. Unfortunately,
it was not possible to examine their analytic structure by
comparison with lower-order diagrams since they are not
reducible to such diagrams in the UV and/or IR limits.
Besides having been checked by two people working
independently [15], the only check made was mutual
consistency among these 18 diagrams. This is not suffi-
cient to eliminate the possibility that they share the same
program error. Clearly, in order to enhance the credibility
of the QED calculation of a;, it is highly desirable to
reevaluate these 18 diagrams by more than one method.

This Letter reports the consequence of our effort to re-
examine the previous result by construction of new and
independent integrals. Before describing the new ap-
proach, let us quickly go over the initial approach. In
that approach (which will be called version A) [15], we
put together vertex diagrams, for instance, [1j(1), I1j(2),
11j(3), all obtained from the self-energy-like diagram [[;j
of Fig. 2 as terms linear in the magnetic field in the weak
field expansion. This is to take advantage of their shared
structure and the tendency of partial cancellation among
them. With the help of Ward-Takahashi identity, the sum
A¥(p, q) of all vertex diagrams thus related to a self-
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FIG. 1. Vertex diagrams containing a light-by-light scattering
subdiagram internally. There are altogether 18 such diagrams.
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energy diagram 2(p) can be expressed as

IA (P, q) } _93(p)
aqv q=0 apl/ ’

where (p + ¢/2)*> = (p — q/2)*> = m}. The g — 2 term is

projected out from the right-hand side of (3). In terms of

Feynman parameters zi, 2o, ..., Zy, the nth order mag-
netic moment derived from (3) has a form

M — <—Tl>"(n - 1! ](dz)[%ﬁ

+(N+2Z)

AN (p, q) = —q“[ 3)

| «
U2vn ( )

where bold letters E, C, N, and Z stand for parts of the
projection operator adapted to the first and second terms
on the right-hand side of (3). U is the Jacobian of trans-
formation from momentum-space variables to Feynman
parameters. V™! is obtained by combining all propagators
into one with the help of Feynman parameters. See
[16] for precise definitions of projection operators, U, V,
and (dz).

In order to check the validity of version A based on
Fig. 2, we evaluated these diagrams by a second method,
called version B, which is actually a straightforward
parametrization of individual vertex diagrams of Fig. 1,
without relying on the Ward-Takahashi identity. In this
approach, it is convenient to evaluate the sum jkl(n) =
1Lj(n) + llk(n) + [li(n), where n = 1,2, 3, since partial
cancellation of singular terms occurs resulting in less
singular behavior.

Diagrams of Fig. 1 (or Fig. 2) form a (formal) gauge-
invariant set. But individual diagrams are UV divergent
and must be regularized in advance, for instance, by
dimensional regularization, to enforce gauge invariance.
For numerical evaluation, however, it turns out to be more
convenient to combine it with a subtractive regulariza-
tion. Let F,(d) be one of the integrals defined in d
dimensions, where m is any one of 1j(1), ..., l1i(3). Let
G,,(d) be the subtraction term containing the light-by-
light scattering tensor with zero external momenta
I1,,,,(0,0,0,0) as well as terms containing a sixth-order
charge renormalization diagram. Let us rewrite F,,(d)
symbolically as

[Fm(d) - Gm(d)] + Gm(d)! (5)

where ‘“‘symbolically” means that subtraction is per-
formed on the integrand before the integration is carried
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FIG. 2. Self-energy-like diagrams in which lepton lines
propagate in the magnetic field. First-order terms in the weak
magnetic field expansion correspond to the diagrams of Fig. 1.
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out. Now we can safely take the limit d — 4 for the first
term since its integrand does not cause UV divergence. Of
course, the second term G, (d) is singular for d — 4.
However, gauge invariance guarantees that the sum of
G,,(d) over all diagrams of Fig. 1 vanishes for any value of
dimension d:

> G,d) =0 (6)

Thus, we have to compute only [F,,(4) — G,,(4)] in the
end.

The integrands of both versions A and B were gener-
ated by an algebraic program FORM [17]. Numerical in-
tegration is carried out by an adaptive-iterative Monte
Carlo routine VEGAS [18].

When we compared the numerical results of versions A
and B, we were surprised to find that their values were
significantly different. After extensive detective work, we
located a programming error in version A, which resulted
from an incomplete implementation of the E operation of
(4) in the algebraic manipulation program: It left out
some terms referring to the light-by-light loop subdia-
gram. Such a program error can be readily detected if the
integral exhibits UV or IR divergence after renormaliza-
tion is carried out. Unfortunately, the particular error in
the 18 diagrams caused no divergence and escaped scru-
tiny of two people. Once this error was corrected, both
approaches gave identical numerical results. Thus, we
now have two sets of independent codes for the 18 dia-
grams that have been fully verified.

Numerical evaluation of these diagrams requires an
enormous amount of computational effort. A systematic
algorithm of computation to minimize human error is
indispensable. Such a scheme was developed originally
for the calculation of the sixth-order lepton g — 2 [16,19]
and was thoroughly tested over the years [20]. It was later
extended to the eighth order [21]. Early results for the
eighth-order term remained rather crude for many years.
This is mainly due to the enormous size of the integrands
which could not be handled adequately by the computers
then available. More precise values have become available
only in this decade thanks to the development of mas-
sively parallel computer, which enabled us to vastly in-
crease the sampling statistics of VEGAS.

Enlarging sampling statistics, however, amplified the
difficulty caused by a previously poorly understood prob-
lem in estimating errors in a computer calculation. This
arises from the fact that computer calculation always
deals with a finite number of digits. This means that the
error estimate based on the assumption of normal distri-
bution of errors must be modified to take the effect of
rounding-off of digits into account. In our formulation in
which subtractive renormalization of UV divergence as
well as separation of IR divergences are carried out on the
computer, this digit deficiency problem can seriously dis-
tort error estimates, or even prevent further iteration.
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TABLE I. Muon g — 2 contributions from the diagrams of
Fig. 1. In version A the Ward-Takahashi-summed //j = {1j(1) +
1j(2)+11j(3), lk=1lk(1)+1Ik(2)+11k(3), and HI=1(1)+
1I(2) + 111(3) are calculated, while in version B jkI(1,3)=

(1) +11j(3) + k(1) + 1Ik(3) + 11I(1) + 111(3) and  jkI(2)=
11j(2) + l1k(2) + 111(2) are calculated.
Version A Version B
lj 6.389 802(460) Jki(1,3) —3.509978(802)
s —7.763474(537) JkI(2) —0.921 589(89)
11 —3.059704(452)
Sum —4.433376(840) Sum —4.431567(806)

Besides increasing the number of effective digits from
real*8 to real*16 arithmetic, which was the most obvious
and effective cure, various methods had to be devised to
deal with the digit deficiency error [22].

New results of numerical integration of a, by
versions A and B are listed in Table 1. The values of 1},
llk, and 11 listed were obtained using 5 X 10° sampling
points per iteration and iterated 110, 219, and 220 times,
respectively. They were evaluated on v1 cluster at Cornell
Theory Center. The calculation of version B was carried
out on Fujitsu VPP700E at the Computer and Information
Division of RIKEN. For jkI(1,3), 4.6 X 10° sampling
points per iteration were used for 131 iterations. The
program jkI(2) shows less singular behavior. It was evalu-
ated using 4.6 X 10° sampling points per iteration and
iterated 60 times.

Results for the electron are listed in Table IL. The values
of 1lj, llk, and Il listed were obtained using 2 X 10°
sampling points per iteration and iterated 160, 220, and
180 times, respectively, on v1 cluster at Cornell Theory
Center. For jki(1, 3), 4.6 X 10° sampling points per itera-
tion were used for 60 iterations on VPP700E. For jkI(2),
4.6 X 10° sampling points per iteration were used and
iterated 60 times.

Combining the results of version A and version B from
Table I, and similarly for Table II, which we treat as
statistically independent, we obtain the best estimate of
the contribution to a, from the 18 Feynman diagrams of
Fig. 1:

TABLE II.  Electron g — 2 contributions from the diagrams
of Fig. 1. In version A the Ward-Takahashi-summed [/j=
Hj(1) +11j(2) +11j(3), lk=1Ik(1)+ 1Ik(2) + 1Ik(3), and lll=
1)+ 111(2) + 111(3) are calculated, while in version B
JkI(1,3)=11j(1) + 11j(3) + 1Ik(1) + 1Ik(3) + 11I(1) + 11I(3)  and
Jkl(2)=11j(2) + l1k(2) + [1I(2) are calculated.

Version A Version B
lj 2.551223(78) Jki(1, 3) —0.872717(138)
Ik —1.873801(72) Jjki(2) —0.117959(28)
1 —1.668 182(80)
Sum —0.990760(133) Sum —0.990675(141)
021803-3



VOLUME 90, NUMBER 2

PHYSICAL REVIEW LETTERS

week ending
17 JANUARY 2003

a = —4.43243(58)()", (7

and a corresponding result for a,,

alye, = —0.99072(10)(2)* (8)

Here, superscripts (8)u and (8)e refer to the eight-order
muon and electron g — 2, the subscript /V to the group of
all diagrams containing light-by-light scattering subdia-
grams, and (d) to its subgroup shown in Fig. 1, which
consists of all diagrams containing an internal light-by-
light scattering diagram.

The new results (7) and (8) supersede the earlier values
—3.4387(533)(a/m)* [7] and —0.7503(60)(a/7)* [23],
respectively. The effect of this modification on
aM(QED) is less than 1% of the overall eighth-order
term [which is of the order of 130(a/w)*], and thus
does not affect comparison of experiment and theory
significantly. On the other hand, the effect on a, is
~ —7.0X10"'> which is about 16% of the entire
eighth-order term and is larger than the measurement
uncertainty 4.3 X 1072, As a consequence, it reduces
the inverse fine structure constant o' obtained from
theory and measurement of a, by ~0.82 X 107¢ or
~6 ppb. Currently, all a* terms are being upgraded by
an extensive numerical integration. Precise values of
a,(QED) and a,(QED) including these terms will be
reported in [9,10].
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