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A standing mystery in the standard model is the unnatural smallness of the strong CP violating
phase. A massless up quark has long been proposed as one potential solution. A lattice calculation of the
constants of the chiral Lagrangian essential for the determination of the up quark mass, 2�8 � �5, is
presented. We find 2�8 � �5 � 0:29� 0:18, which corresponds to mu=md � 0:410� 0:036. This is the
first such calculation using a physical number of dynamical light quarks, Nf � 3.
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Introduction.—The nontrivial topological structure of
the QCD gauge vacuum generates a CP breaking term in
the QCD Lagrangian. However, measurements of the
neutron electric dipole moment have placed a restrictive
upper bound on this term’s coefficient, 
�� � 10�9 [1]. The
unnatural smallness of 
�� is known as the strong CP
problem.

A massless up quark (mu � 0) has long been proposed
as a potential elegant solution to the problem. Chiral
rotations of the quark mass matrix M shift 
��,


�� � �� argdetM; (1)

where � is a fundamental parameter of the standard
model. However, if mu � 0, then detM � 0
and argdetM is unphysical, leaving one free to re-
move the CP violating term through a simple field
redefinition.

At leading order (LO), chiral perturbation theory
(ChPT) appears to rule out the possibility of mu � 0.
The quark mass ratios, including mu=md, can be deter-
mined using ChPT’s LO predictions for the light meson
masses.

At next-to-leading order (NLO), however, new coeffi-
cients appear in the chiral expansion which contribute to
the meson masses. The parameters of ChPT are no longer
fully determined by experimental data. In fact, it is
impossible for ChPT to distinguish between the effects
of a nonzero up quark mass and certain large NLO
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corrections. This is known as the Kaplan-Manohar
ambiguity [2].

Distinguishing between a light and a massless up
quark requires knowledge of the coefficients of the
NLO terms in the chiral Lagrangian, the Gasser-
Leutwyler (GL) coefficients. Specifically, it is the combi-
nation of constants 2�8 � �5 [3] which appears in �M,
the NLO correction to the quark mass ratios [4]. If this
combination falls within a certain range, �3:3< 2�8 �
�5 <�1:5, current experimental results cannot rule
out mu � 0.

Various assumptions and phenomenological arguments
have been used in the past to assemble a somewhat stan-
dard set of values for the coefficients [5]. However, be-
cause these coefficients are physically determined by the
low-energy nonperturbative behavior of QCD, the lattice
offers the best opportunity for a truly first-principles
calculation.

Partially quenched chiral perturbation theory
(pqChPT).—pqChPT [6,7] is the tool through which
one can calculate the GL coefficients on the lattice.
pqChPT is distinct from standard ChPT in that it is
constructed from the symmetry of a graded group. This
graded group follows from the presumed quark content of
partially quenched QCD (pqQCD): separate valence and
sea quark flavors in addition to ghost quark flavors, which
in perturbation theory cancel loop corrections due to
valence quarks.

The Lagrangian of pqChPT up to O�p4� follows, with
only relevant NLO terms shown.
L �
f2

4
sTr�@�U@

�Uy
 �
f2

4
sTr��Uy �U�
 � L4sTr�@�U@

�Uy
sTr��Uy �U�
 � L5sTr�@�U@
�Uy��Uy �U��


� L6sTr��Uy �U�
sTr��Uy �U�
 � L8sTr��Uy�Uy �U�U�
 � � � � ; (2)

�1 dim �1
where U � exp�2i�=f�, � � 2�a diag�fmS;mVg�, �
contains the pseudo-Goldstone ‘‘mesons’’ of the sponta-
neously broken SU�Nf � NV jNV�L � SU�Nf � NVjNV�R
symmetry, and U is an element of that group. mS and
mV refer to the bare lattice quark mass parameters, which
are related to their dimensionful equivalents via the
lattice spacing, mx � a mx. Three degenerate sea
quarks were used, Nf � 3, while the number of valence
quarks NV cancels in all expressions, affecting only the
counting of external states. The constants f, �, and the
Li’s are unknown, determined by the low-energy dynam-
ics of pqQCD.
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Because the valence and sea quark mass dependence of
the Lagrangian of pqChPT is explicit and full QCD is
within the parameter space of pqQCD (mV � mS), the
values obtained for the GL coefficients in a pqQCD
calculation are the exact values for the coefficients in
full QCD [8,9]. Furthermore, independent variation of
valence and sea quark masses allows additional lever
arms in the determination the the coefficients. Because
the Nf dependence of the Lagrangian is not explicit, the
GL coefficients are functions of Nf. Thus, it is important
to use a physical number of light sea quarks, as we have,
when extracting physical results.

Predicted forms.—pqChPT predicts forms for the de-
pendence of the pseudoscalar mass and decay constant on
the valence quark mass, here assuming degenerate sea
quarks and degenerate valence quarks, and cutting off
loops at �� � 4�f.

M2
� � �4�f�2zmV

�
1� zmV

�
2�8 � �5 �

1

Nf

�

�
z
Nf

�2mV �mS� lnzmV

�
; (3)

f� � f
�
1�

�5

2
zmV �

zNf

4
�mV �mS� ln

z
2
�mV �mS�

�
;

(4)

where z � 2�a�1=�4�f�2. These forms differ slightly
from those in [10], as the NLO dependence in the sea
quark mass has been absorbed into � and f. This is
allowed as the error due to this change is manifest when
z appears in the NLO terms, pushing the discrepancy up
to NNLO. Accounting for these absorbed terms would
require a systematic study at several sea quark masses.

The forms above are derived assuming degenerate light
mesons. However, our use of staggered fermions on some-
what coarse lattices generates significant flavor symmetry
breaking, and thus a splitting of the light meson masses.
A detailed analysis of this effect with dynamical quarks
was recently presented in [11].
TABLE I. Simu

a�1 (M
L T � mS Starta Traj Block

16 32 5.3 0.01 O 250–2250 200 1271 (85) 1
D 250–2250 200

12c 32 5.3 0.01 O 250–1850 200 1470 (130)
8 32 5.115 0.015 O 300–10 300 100 679.8 (14)
8 32 5.1235 0.02 O 300–10 300 100 683.5 (12)
8 32 5.132 0.025 T 0–10 000 100 686.1 (15)
8 32 5.151 0.035 T 0–10 000 100 695.0 (14)
16 32 5.8 1 144 configs 1

aStarting configuration state: ordered, disordered, or thermal.
bDenotes a hypercubic blocked ensemble.
cSpatial volume is 122 � 16.

021601-2
In order to study this error, we applied hypercubic
blocking to several of our ensembles, using the blocking
coefficients found in [12]. Because hypercubic blocked
dynamical quarks were not used when generating these
ensembles, we are using different Dirac operators for the
valence and sea quarks. While this procedure may not
have a clean continuum limit, it is still useful for estimat-
ing the systematic error due to flavor symmetry breaking.

The ensembles were generated using staggered fermi-
ons and the inexact hybrid molecular dynamics (HMD) R
algorithm [13], which allows one to work at Nf � 3, but
involves taking the 3

4 root of the quark determinant. The
result is a quark action which is nonlocal at finite lattice
spacing, but should become local in the continuum limit.
The details of the simulations and results are summar-
ized in Table I.

To determine the value of 2�8 � �5, the local pseudo-
scalar correlator was calculated using several valence
quark masses. The correlators were fit to exponentials,
while the meson mass and decay constants were simulta-
neously fit to the predicted forms. The results of the fit are
the values �, f, �5, and 2�8 � �5. Figure 1 displays an
example of one such fit.

When fitting, a chiral cutoff point in the valence quark
mass beyond which one expects pqChPT to break down
must be chosen. To choose our cutoff, we added mV values
to our fit keeping mV=mK � 1 and keeping �2=dof � 1.
The cutoff determined for the 163 � 32 hypercubic
blocked ensemble, in terms of mV=mK, was used for all
of the � � 5:3, mS � 0:01 ensembles. mK denotes an
ensemble’s valence quark mass at which the mass of the
lightest pseudoscalar meson with degenerate quarks
equals the physical kaon mass. We found 2�8 � �5 to be
very sensitive to our cutoff choice. For the 163 � 32
hypercubic blocked ensemble, changing the chiral cutoff
by �0:14 in mV=mK shifted 2�8 � �5 by �0:12.

Figures 2–4 display the quantity

RM �
M2

��mS�mV

M2
��mV�mS

(5)
lation details.

eV) M��mV � mS� (MeV) 2�8 � �5

hypb hypc hypc

376.9 (74) 378 (25) 271.3 (19) 0.236 (12) 0.287 (18)

1419 (26) 438 (39) 289.1 (70) 0.196 (15) 0.226 (64)
710.9 (24) 214.58 (45) 218.00 (75) 0.326 (12) 0.3439 (76)
723.3 (22) 249.27 (44) 254.18 (79) 0.343 (11) 0.3817 (87)
734.6 (22) 279.54 (62) 286.79 (88) 0.388 (10) 0.4150 (91)
744.3 (25) 334.45 (68) 341.0 (12) 0.475 (12) 0.4704 (94)
408.4 (42) 274.2 (13) 0.231 (31)

021601-2



0 0.2 0.4 0.6 0.8 1

m
V
 / m

K

0
(100)

2

(200)
2

(300)
2

(400)
2

(500)
2

M~ π2  (
M

eV
)2

16
3
 x 32  β = 5.3  mS = 0.01  hyp

2α8 − α5 = 0.287(18)

FIG. 1. 163 � 32, � � 5:3, mS � 0:01, hypercubic blocked.
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suggested by [14]. This quantity accentuates the NLO
terms in M2

�, as is evident by comparing Fig. 1 to
Figs. 2–4. It should be noted, however, that the full forms
of M2

� and f�, (3) and (4), were used when fitting. When
calculating RM, we did not use the simplification shown
in [14], but rather used a full numerator and denominator.

For each of the plots, the data points are the result of
individual fits of the correlator at each valence quark
mass, with jackknife error bars. The curves display the
result of a simultaneous fit of all the correlators below a
cutoff in mV=mK to the predicted forms of M2

� and f�, (3)
and (4), with jackknife error bounds. Solid symbols are
used below the cutoff, while open symbols are used
beyond it. Because of our small ensemble sizes, the full
correlation matrix for many of the ensembles proved to be
nearly singular. Thus, several of the fits do not fully
account for data correlation.

We determined the lattice spacing of our ensembles via
the static quark potential, using a tree-level corrected
Coulomb term. The form of this term for hypercubic
blocked ensembles was taken from [15].
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FIG. 2. 163 � 32, � � 5:3, mS � 0:01. The squares and
dashed curve (diamonds and solid curve) are before (after)
hypercubic blocking. Data consistent with mu � 0 would fall
within the range centered on the dash-dotted curve.
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Results.—Figure 2 presents RM for the 163 � 32 en-
semble both before and after hypercubic blocking. The
application of hypercubic blocking altered results signifi-
cantly, suggesting that the effect of flavor symmetry
breaking at these lattice spacings is significant. The
dash-dotted curve uses the results from the hypercubic
blocked ensemble’s fit, but replaces the value found for
2�8 � �5 with one consistent with a zero up quark mass.
The data clearly fall well outside this range.

To estimate the finite volume error in our result,
we repeated the calculation in a smaller 122 � 16� 32
volume, holding all other parameters fixed. Fitting this
ensemble with the same chiral cutoff as the 163 � 32
ensemble resulted in the value 2�8 � �5 � 0:226�
0:064. This matches our quoted result, suggesting that
the finite volume of our 163 � 32 ensemble is not a large
source of systematic error.

Figure 3 presents RM for several ensembles with a
variety of sea quark masses and matched lattice spacing.
The physical volume of these lattices is similar to the
physical volume of our 163 � 32 ensemble. The Columbia
group has determined several values of the critical �c and
mc for the Nf � 3, Nt � 4 finite temperature transition
[16]. These ensembles were generated using those bare
parameters. The trend in 2�8 � �5 with the changing sea
quark mass is inset in Fig. 3. This trend can be attributed
to the sea quark mass dependence which was dropped
from Eqs. (3) and (4). A systematic study of this depen-
dence would allow a determination of the parameter
within the dropped term, 2�6 � �4 [17].

Fully quenched and partially quenched ChPT predict
different forms for RM. Thus, one might hope to see
the effects of quenching though an ensemble’s RM
plot. Figure 4 shows the 163 � 32 partially quenched
hypercubic blocked ensemble alongside a fully quenched
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FIG. 3. 83 � 32, several values of � and mS with matched
lattice spacing, hypercubic blocked. The inset shows the effect
of varying mS on 2�8 � �5 when 2�6 � �4 terms are
neglected.
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FIG. 5. Compiled results. The UKQCD Collaboration data
point is taken from [18], showing their statistical error only.
This point was calculated using Nf � 2 Wilson fermions, and
thus its relative agreement suggests small Nf dependence. The
rightmost point denotes the range allowed by mu � 0.
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FIG. 4. 163 � 32, hypercubic blocked with similar lattice
spacings. The circles and dashed curve (diamonds and solid
curve) are fully (partially) quenched. The quenched data were
fit as though partially quenched with ms � 0:01, Nf � 3.
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ensemble with similar lattice spacing. The quenched
ensemble was analyzed as though partially quenched,
using mS � 0:01, Nf � 3. This procedure does not
generate a rigorous value for 2�8 � �5, as this would
require the use of fully quenched ChPT. However, it could
offer insight into the magnitude of quenching effects. As
Fig. 4 shows, the effects of quenching are not pronounced.
This analysis, at its current level of precision, is unable to
distinguish a fully quenched ensemble from a partially
quenched ensemble of equal lattice spacing.

The results for 2�8 � �5 from each ensemble are com-
piled in Fig. 5. While these values vary significantly, they
do so well outside the range required for a zero up quark
mass, �3:3< 2�8 � �5 <�1:5. Our quoted result of
2�8 � �5 � 0:287� 0:018stat � 0:18syst comes from our
hypercubic blocked 163 � 32 ensemble, where the re-
ported systematic error is the result of adding in quad-
rature the determined effects of shifting the chiral cutoff
��0:12�, hypercubic blocking ��0:05�, doubling the lat-
tice spacing ��0:11�, and reducing the lattice volume
��0:06�. Assuming Dashen’s rule [19], this corresponds
to �M � �0:0897� 0:0313 and mu=md � 0:484�
0:027, where the quoted error arises primarily from the
systematic error of our measurement. The error from
experimental input is negligible and the size of NNLO
corrections to �M are assumed to be on the order of �2

M.
Using the values for the electromagnetic contributions to
the light meson masses from [20] in place of Dashen’s rule
results in �M � �0:0898� 0:0313 and mu=md �
0:410� 0:036. This can be compared to previous calcu-
lations in the literature, which have given mu=md �
0:553� 0:043 [21] and mu=md � 0:46� 0:09 [22].
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