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We find all the exact eigenstates and eigenvalues of a spin-1=2 model on square lattice: H �
16g
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i�ŷy . We show that the ground states for g < 0 and g > 0 have different quantum

orders described by Z2A and Z2B projective symmetry groups. The phase transition at g � 0 represents
a new kind of phase transition that changes quantum orders but not symmetry. Both the Z2A and Z2B
states contain Z2 lattice gauge theories at low energies. They have robust topologically degenerate
ground states and gapless edge excitations.
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low energy excitations without the need to know the
details of a system [8,9]. The quantum order and its

fluctuations of quantum entanglements. Also, the robust
topological degeneracy in topological ordered states
Introduction.—We used to believe that all phases of
matter are described by Landau’s symmetry breaking
theory [1,2]. The symmetry and the related order parame-
ters have dominated our understanding of phases and
phase transitions for over 50 years. In this respect, the
fractional quantum Hall (FQH) states discovered in 1982
[3,4] opened a new chapter in condensed matter physics.
The theory of phases and phase transitions entered into a
new era. This is because all different FQH states have
the same symmetry and hence cannot be described by
Landau’s theory. In 1989, it was realized that FQH states,
having a robust topological degeneracy, contain a com-
pletely new kind of order—topological order [5]. Awhole
new theory was developed to describe the topological
orders in FQH liquids. (For a review, see Ref. [6].)

Landau’s theory was developed for classical statistical
systems which are described by positive probability dis-
tribution functions of infinite variables. FQH states are
described by their ground state wave functions which are
complex functions of infinite variables. Thus it is not
surprising that FQH states contain addition structures
(or a new kind of order) that cannot be described by
broken symmetries and Landau’s theory. From this point
of view, we see that any quantum states may contain a
new kind of order that is beyond symmetry characteriza-
tion. Such a kind of order was studied in Ref. [7] and was
called quantum order. Since we cannot use order parame-
ter to describe quantum orders, a new mathematical
object-projective symmetry group (PSG) was introduced
[7] to characterize them. The topological order is a spe-
cial case of quantum order—a quantum order with a
finite energy gap.

One may ask why do we need to introduce a new
concept quantum order? What use can it have? To answer
such a question, we would like to ask why do we need the
concept of symmetry breaking? Is the symmetry break-
ing description of classical order useful? Symmetry
breaking is useful because (a) it leads to a classification
of crystal orders, and (b) it determines the structure of
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PSG description are useful in the same sense: (a) PSG
allows us to classify over 100 different spin liquids that
have the same symmetry [7], and (b) quantum orders
determine the structure of low energy excitations without
the need to know the details of a system [7,10,11]. The
main difference between classical orders and quantum
orders is that classical orders produce and protect gapless
Nambu-Goldstone modes [8,9] which are a bosonic ex-
citation, while quantum orders can produce and protect
gapless gauge bosons and gapless fermions. Fermion ex-
citations (with gauge charge) can even appear in pure
bosonic models as long as the boson ground state has a
proper quantum order [12–14].

Those amazing properties of quantum orders could
fundamentally change our views on the universe and its
elementary building blocks. The believed ‘‘elementary’’
particles, such as photons, electrons, etc., may not be
elementary after all. Our vacuum may be a bosonic state
with a nontrivial quantum order where the elementary
gauge bosons and the elementary fermions actually ap-
pear as the collective excitations above the quantum
ordered ground state. It may be the quantum order that
protects the lightness of those elementary particles whose
masses are 1020 below the natural mass—the Plank mass.
Those conjectures are not just wild guesses. A quantum
ordered state for a lattice spin model has been constructed
[10] which reproduces a complete QED with light, elec-
trons, protons, atoms, etc.

The concept of topological/quantum order is also use-
ful in the field of quantum computation. People have been
designing different kinds of quantum entangled states to
perform different computing tasks. When a number of
qubits becomes larger and larger, it is more and more
difficult to understand the pattern of quantum entangle-
ments. One needs a theory to characterize different quan-
tum entanglements in many-qubit systems. The theory of
topological/quantum order [6,7] is just such a theory. In
fact, topological/quantum orders can be viewed as pat-
terns of quantum entanglements and gauge bosons the
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discovered in Ref. [5] can be used in fault-tolerant quan-
tum computation [13].

It is hard to convince people about the usefulness of
quantum orders when their very existence is in doubt.
However, a growing list of soluble or quasisoluble models
[13–18] indicates that topological/quantum order does
exist beyond FQH states. In particular, Kitaev has con-
structed exactly soluble spin models that realize both
topological orders (i.e., quantum orders with finite energy
gap) and gapless quantum orders [14].

In this paper, we study an exact soluble spin-1=2 model
on square lattice: H � 16g
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find that the ground states for g < 0 and g > 0 have the
same symmetry but different quantum orders. The PSG’s
for those quantum ordered states are identified. The phase
transition at g � 0 represents a new kind of phase tran-
sition that changes quantum orders but not symmetry. We
show that the projective construction that is used to con-
struct quantum ordered ground states [12,19–22] not only
gives us exact ground states for our model, but also all the
exact excited states. Through this soluble model, we hope
to put quantum order and its PSG description on a firm
ground.

We would like to mention that the above spin-1=2
model, having one spin per unit cell, is different from
Kitaev’s exact soluble spin-1=2 models on the links of
square lattice and on the sites of honeycomb lattice
(which have two spins per unit cell) [13,14]. However,
the g < 0 version of the above model corresponds to the
low energy sector of Kitaev’s honeycomb lattice model in
the Jz � Jx; Jy limit [14,23].

The exact soluble model.—The Hamiltonian of our
exact soluble model has a form

H � g
X

i

F̂Fi; F̂Fi � �yi�
x
i�x̂x�

y
i�x̂x�ŷy�

x
i�ŷy ; (1)

where �x;y;z are the Pauli matrices and i � �ix; iy� labels
the site of a square lattice. The model is exactly soluble
since all the F̂Fi operators commute �F̂Fi; F̂Fj� � 0. Since
F̂F2

i � 1, the eigenvalues of F̂Fi are Fi � �1. All the en-
ergy eigenstates can be labeled by the sets of common
eigenvalues jfFigi . The energy of state jfFigi is given byP

i gFi. We see that when g < 0 the ground state has all
Fi � 1 and when g > 0 the ground state has all Fi � 1.

The above result is valid only for infinite systems. For
finite systems, the situation is much more complicated.
On even by even periodic lattice of Ns site, the operators
F̂Fi satisfy

Q
ix�iy�even F̂Fi � 1 and

Q
i F̂Fi � 1. Thus, there

are only 2Ns=4 different choices of fFig, which is not
enough to label 2Ns different spin states. Later, we will
use the slave-boson approach [12,19–22] (or projective
construction) to solve the model on finite lattice. We find
that the common eigenstates of F̂Fi have a fourfold degen-
eracy. Thus each energy eigenvalue (including the ground
state) has at least fourfold degeneracy. The projective
construction also relates the fourfold degeneracy of the
ground state to an effective Z2 gauge theory. This allows
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us to show that the fourfold degeneracy of the ground
states is a topological degeneracy which is robust against
any local perturbation of the Hamiltonian. The projective
construction also allows us to show that the two ground
states for g < 0 and for g > 0 have different quantum
orders. It is impossible to change one ground state to the
other without phase transitions.

On even by odd periodic lattice, there is only one
constraint

Q
i F̂Fi � 1 and there are 2Ns=2 different

choices of fFig. The projective construction allows us to
show that each label fFig has two degenerate states. Thus
the ground states of our model have a twofold topological
degeneracy.

Although the g < 0 and g > 0 ground states share
many common properties on an even by even and odd
by even lattices, the two states are quite different on an
odd by odd lattice. On an odd by odd lattice, the g < 0
ground state has an energy jgjNs and a twofold degen-
eracy, while the g > 0 ground state, containing a single
plaquette with Fi � 1 to satisfy the constraint

Q
i Fi � 1,

has an energy jgj�Ns  2� and a 2Ns-fold degeneracy.
The different ground state properties confirm that the g <
0 and g > 0 ground states have different quantum orders.

Now let us consider a finite Lx � Ly lattice which is
periodic only in the y direction. The lattice has two edges
in the y direction. Such a lattice model can be obtained
from the periodic lattice model by setting g � 0 for a
column of plaquettes. We find that the ground states have
�2Ly-fold degeneracy which correspond to gapless edge
states. Since there are 2Ly edge sites, we find that there are���
2

p
edge states per edge site, indicating that the gapless

edge states are described by Majorana fermions.
Exact solution from projective construction.—Usually,

the projective construction does not give us exact results.
However, our model is constructed such that the projec-
tive construction does give us exact results. Our construc-
tion is motivated by Kitaev’s construction of soluble
spin-1=2 models on honeycomb lattice [14]. The key
step in both constructions is to find a system of commut-
ing operators. Let ÛUa

ij � �Ti U
a
ij�j, where i; j label lattice

sites, a is an integer index, Ua
ij is an n� n matrix

satisfying �Ua
ij�

T � Ua
ji, and �Ti � ��1;i; �2;i; . . . ; �n;i�

is a n-component Majorana fermion operator satisfying
f�a;i; �b;jg � 2�ab�ij. We require that all ÛUa

ij commute
with each other: �ÛUa

i1i2
; ÛUb

j1j2
� � 0, which can be satisfied

if and only if

Ua
i1i2
Ub

i2i3
� 0; Ua

i1i2
Ub

i2i1
� �Ua

i1i2
Ub

i2i1
�T;

Ua
i1i1
Ub

i1i2
� 0;

(2)

where i1, i2, and i3 are all different. From a solution of
Eq. (2), we find that

ÛUi;i�x̂x � i�1;i�3;i�x̂x ; ÛUi;i�ŷy � i�2;i�4;i�ŷy (3)

form a commuting set of operators.
After obtaining a commuting set of operators, we can

easily see that the following Hamiltonian
016803-2
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H � g
X

i

F̂Fi; F̂Fi � ÛUi;i1ÛUi1;i2ÛUi2;i3ÛUi3;i (4)

commutes with all the ÛUij’s, where i1 � i� x̂x, i2 � i�
x̂x � ŷy, and i3 � i� ŷy. We will call F̂Fi a Z2 flux operator.
Let jsiji be the common eigenstate of ÛUij with eigen-
value sij. Since �ÛUij�

2 � 1, sij satisfies sij � �1 and
sij � sji. jsiji is also an energy eigenstate of Eq. (4)
with energy

E � g
X

i

Fi; Fi � si;i1si1;i2si2;i2si3;i: (5)

We note that jsiji is the ground state of the following free
fermion system

Hmean � 
X

hiji

�sijÛUij � H:c:�: (6)

Let us discuss the Hilbert space within which the
Hamiltonian H in Eq. (4) acts. On each site, we group
�1;2;3;4 into two fermion operators

2 1;i � �1;i � i�3;i; 2 2;i � �2;i � i�4;i: (7)

 1;2 generates a four dimensional Hilbert space on each
site. Let us assume the 2D square lattice to have Ns lattice
sites and a periodic boundary condition in both direc-
tions. Since there are a total of 22Ns different choices of sij
(two choices for each link), the states jsiji exhaust all the
4Ns states in the Hilbert space. Thus the common eigen-
states of ÛUij is not degenerate and the above approach
allows us to obtain all the eigenstates and eigenvalues of
the H.

We note that the Hamiltonian H can only change the
fermion number on each site by an even number. Thus the
H acts within a subspace which has an even number of
fermions on each site. The subspace has only two states
per site. When defined on the subspace, H actually de-
scribes a spin-1=2 or a hard-core boson system. In fact,
within the subspace the fermion Hamiltonian equation (4)
becomes our spin-1=2 model Eq. (1).

The subspace is formed by states that are invariant
under local Z2 gauge transformations:  Ii ! Gi Ii, Gi �
�1. We will call those states physical states and call the
subspace the physical Hilbert space. All the physical
states can be obtained from the jsiji states by projecting
into the subspace with even numbers of fermions per site.
Since the Z2 gauge transformations change sij to ~ssij �
GisijGj, we find jsiji and j~ssiji give rise to the same
physical state after projection (if their projection is
not zero). We also note that the product of all
links

Q
i si;i�xsi;i�y � ��N̂Nf , where N̂Nf �

P
i� 

y
1i 1i �

 y
2i 2i� is the total fermion number operator. Thus

the projection of jsiji is nonzero only whenQ
i si;i�xsi:i�y � 1.
The above results allow us to count the number of

physical states. Again we assume a periodic boundary
condition in both directions. Noting that the constant Z2

gauge transformation Gi � 1 does not change sij, thus
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there are 2Ns=2 distinct sij that are gauge equivalent to
each other. Among 4Ns jsiji state, 4Ns=2 of them satisfyQ

i si;i�xsi;i�y � 1. Thus there are ��4Ns=2�=�2Ns=2�� �
2Ns physical states, which agree with the number of
spin-1=2 states in our model. Thus we can obtain all the
eigenstates and eigenvalues of the H in the physical
Hilbert space from our construction.

Let us assume that one of the eigenstates of our spin
model Eq. (1) is given by the projection of a jsiji state.
Other degenerate eigenstate states can be obtained by
performing the following two transformations:

T1:�si;i�x; si;i�y� ! �si;i�x; ���iy si;i�y�;

T2:�si;i�x; si;i�y� ! ����ix si;i�x; si;i�y�:
(8)

We see that T1 does not change si;i�x and only flips the
sign of si;i�y when iy � 0. If we view the periodic lattice
as a torus, T1 and T2 insert" flux through the two holes of
the torus. On an even by even lattice, the transformations
T1 and T2 do not change the product

Q
i si;i�xsi;i�y.

Therefore, the three transformations T1, T2, and T1T2
generate the other three degenerate states. Our spin-1=2
model has four degenerate ground states on an even by
even periodic lattice.

On an even by odd lattice, the state generated by T2 has
odd numbers of fermions and does not correspond to any
physical spin-1=2 state. Thus, we can only use T1 to
generate the other degenerate state. There are only two
degenerate ground states on an even by odd periodic
lattice (generated by T1). On an odd by odd lattice and
if g < 0, there are also two degenerate ground states
generated by T1T2.

We note that, locally, the T1 and T2 transformations are
indistinguishable from Z2 gauge transformation. Since the
physical spin operators are invariant under Z2 gauge
transformation, they are also invariant under T1 and T2
transformations. Therefore, the degenerate ground states
generated by T1 and T2 remain to be degenerate even
after we add an arbitrary local perturbation to our exact
soluble model Eq. (1). The degeneracy of ground states is a
robust topological property, indicating nontrivial topo-
logical order in the ground state [5,12].

Different quantum orders in the g < 0 and g > 0
ground states.—To understand the different quantum/
topological orders in the g < 0 and g > 0 ground states,
we need to use the PSG description of quantum order [7].
Here, we will give a brief review of PSG characterization
of quantum orders.

Our spin-1=2 model can also be viewed as a hard-core
boson model, if we identify j# i state as a zero-boson state
j0 i and j" i state as a one-boson state j1 i. In the following
we will use the boson picture to describe our model.

To construct quantum ordered (or entangled) many-
boson wave functions, we will use projective construc-
tion. We first introduce a ‘‘mean-field’’ fermion
Hamiltonian [7]:
016803-3
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Hmean �
X

hiji

� y
I;i#

IJ
ij J;j �  y

I;i$
IJ
ij 

y
J;j � H:c:�; (9)

where I; J � 1; 2. We will use #ij and $ij to denote the
2� 2 complex matrices whose elements are #IJij and $IJij .
Let j�

�#i;j;$ij�
mean i be the ground state of the above free

fermion Hamiltonian, then a many-body boson wave
function can be obtained

��#ij;$ij��i1; i2 � � �� � h0j
Y

n

b�in�j�
�#ij;$ij�
mean i; (10)

where
b�i� �  1;i 2;i: (11)

According to Ref. [7], the quantum order in the boson
wave function ��#ij;$ij��fing� can be (partially) character-
ized by PSG. To define PSG, we first discuss two types of
transformations. The first type is SU�2� gauge transfor-
mation

� i; #ij; $ij� ! �Gi i; Gi#ijG
y
j ; Gi$ijG

T
j �; (12)

where Gi 2 SU�2�. We note that the physical boson wave
function ��#ij;$ij��fing� is invariant under the above SU�2�
gauge transformations. The second type is the usual sym-
metry transformation, such as the translations Tx: i !
i x̂x, Ty: i ! i ŷy. A generic transformation is a com-
bination of the above two types, say GTx�#ij� �
Gi#ix̂x;jx̂xG

y
j . The PSG for an ansatz �#ij; $ij� is formed

by all the transformations that leave the ansatz invariant.
Every PSG contains a special subgroup, which is

called the invariant gauge group (IGG). An IGG is
formed by pure gauge transformations that leave the
ansatz unchanged IGG � fGj#ij � Gi#ijG

y
j ; $ij �

Gi$ijGT
j g. One can show that PSG, IGG, and the symme-

try group (SG) of the many-boson wave function are
related: PSG=IGG � SG [7].

Different quantum orders in the ground states of our
boson system are characterized by different PSG’s. In the
following we will concentrate on the simplest kind of
quantum orders whose PSG has a IGG � Z2. We will
call those quantum states Z2 quantum states. We would
like to ask how many different Z2 quantum states are
there that have translation symmetry. According to our
PSG characterization of quantum orders, the above physi-
cal question becomes the following mathematical ques-
tion: how many different PSG’s are there that satisfy
PSG=Z2 � translation symmetry group. This problem
has been solved in Ref. [7]. The answer is 2 for 2D square
lattice. Both PSG’s are generated by three elements
fGxTx;GyTy; Ggg, where Gg is a pure gauge transforma-
tion that generates the Z2 IGG: IGG � f1; Ggg. The gauge
transformations in the three generators for the first Z2

PSG are given by

Gg
i � 1; Gx

i � 1; Gy
i � 1: (13)

Such a PSG will be called a Z2A PSG. The quantum
016803-4
states characterized by Z2A PSG will be called Z2A
quantum states. For the second Z2 PSG, we have

Gg
i � 1; Gx

i � 1; Gy
i � �1�ix : (14)

Such a PSG will be called a Z2B PSG.
When g < 0, the ground state of our model is given by

Z2 flux configuration Fi � 1. To produce such a flux, we
can choose si;i�x̂x � si;i�ŷy � 1. In this case, Eq. (6) be-
comes Eq. (9) with $i;i�x̂x � #i;i�x̂x � 1� �z and
$i;i�ŷy � #i;i�ŷy � 1 �z. The PSG for the above ansatz
turns out to be the Z2A PSG in Eq. (13). Thus the ground
state for g < 0 is a Z2A state. Since IGG � Z2, the low
energy effective theory is a Z2 gauge theory [7].

When g > 0, the ground state is given by configuration
Fi � 1 which can be produced by ��iysi;i�x̂x � si;i�ŷy �
1. The ansatz now has a form $i;i�x̂x � #i;i�x̂x �
��iy�1� �z� and $i;i�ŷy � #i;i�ŷy � 1 �z. Its PSG is
the Z2B PSG in Eq. (14). Thus the ground state for g > 0
is a Z2B state. The g < 0 and g > 0 ground states have
different quantum orders.
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