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Monte Carlo Evaluation of Non-Abelian Statistics
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We develop a general framework to (numerically) study adiabatic braiding of quasiholes in fractional
quantum Hall systems. Specifically, we investigate the Moore-Read (MR) state at � � 1=2 filling factor,
a known candidate for non-Abelian statistics, which appears to actually occur in nature. The non-
Abelian statistics of MR quasiholes is demonstrated explicitly for the first time, confirming the results
predicted by conformal field theories.
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statistics of the MR quasiholes in the framework of con-
formal field theories (CFT), it would be desirable to

 Pf � Pf�ij
i<j

�uivj � viuj� ; (2)
The quantum statistics of a system of identical par-
ticles describe the effect of adiabatic particle interchange
on the many-body wave function. All fundamental par-
ticles belong to one of two classes: those that have their
wave function unaffected by particle interchange (bo-
sons) and those whose wave function gets a minus sign
under permutation (fermions). In two dimensions, it is
known that a number of exotic types of statistics can exist
for particlelike collective excitations. For example, ele-
mentary excitations of the Laughlin fractional quantum
Hall (FQH) states exhibit ‘‘fractional’’ statistics: The
phase of the wave function is rotated by an odd fraction
of� when two Laughlin quasiparticles (or quasiholes) are
interchanged [1,2]. Even more exotic statistics can exist
when a system with several excitations fixed at given
positions is degenerate [3]. In such a case, adiabatic
interchange (braiding) of excitations can nontrivially
rotate the wave function within the degenerate space.
In general, these braiding operations need not com-
mute; hence the statistics are termed ‘‘non-Abelian.’’
Remarkably, the Moore-Read (MR) state, a state which
is commonly believed [4] to describe observed FQH
plateaus at � � 5=2 and 7=2 (which correspond, respec-
tively, to half filling of electrons or holes in the first
excited Landau level), is thought to have such non-
Abelian elementary excitations [3]. Other possible physi-
cal realizations of non-Abelian statistics have also been
proposed [5]. States of this type have been suggested to be
attractive for quantum computation [6].

In Ref. [2], in order to establish the nature of the
statistics of the Laughlin quasiholes, a Berry phase cal-
culation was performed that explicitly kept track of the
wave-function phase as one quasihole was transported
around the other. Although approximations were involved
in this calculation, it nonetheless established quite con-
vincingly the fractional nature of the statistics. Un-
fortunately, it has not been possible to generalize this
calculation to explicitly investigate statistics of the MR
quasiholes [3]. Although there has been much study of the
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perform a direct calculation analogous to that of Ref. [2].
The purpose of this Letter is to provide such a calculation,
albeit numerically. Furthermore, the approach developed
here is readily applicable to other FQH systems which are
not easily accessible to analytic investigations.

The evolution operator of a many-body system de-
scribed by a HamiltonianH��� is in principle determined
by the Schrödinger equation. In general, H��� itself can
change in time through dependence on some varying
parameter ��t�. In such a case, let us define ’i�t� at a
given time t to be an orthonormal basis for a particular
degenerate subspace, requiring that this basis is locally
smooth as a function of t. If � is varied adiabatically (and
so long as the subspace does not cross any other states),
then the time-evolution operator maps an orthonormal
basis of the subspace at one t onto an orthonormal basis
at another t. A solution of the Schrödinger equation,
 i�t� � Uij�t�’j�t�, is simply given by [7]

�U�1 _UU�ij � h’ij _’’ji � Aij�t�: (1)

Since the matrix A is anti-Hermitian, U�t� is guaranteed
to be unitary if its initial value U�0� is unitary. Note that
if we vary � so that the Hamiltonian returns to its initial
value at time t, i.e.,H	��t�
 � H	��0�
, the corresponding
transformation of the degenerate subspace can be non-
trivial, i.e.,  i�t� �  i�0� [7].

We explicitly demonstrate that this is the case for the
MR state with at least four quasiholes. The analysis is
done in spherical geometry [8]: N electrons are posi-
tioned on a sphere of unit radius, with their coordinates
given by �u1; v1�; . . . ; �uN; vN�, using the spinor notation
(i.e., u � ei�=2 cos�=2 and v � e�i�=2 sin�=2 in terms of
the usual spherical coordinates). A monopole of charge
2S � 2N � n� 3 in units of the flux quanta �0 � hc=e
is placed in the center of the sphere, giving rise to 2n
quasiholes which are put at �~uu1; ~vv1�; . . . ; �~uu2n; ~vv2n�. Using
the gauge ~AA � ��0S=2���̂� cot�, the MR wave function
[3] is then given by

�a;b;...���;�;...�
Y
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where Pf��a;b;...���;�;...�
ij is the Pfaffian [3] of the N � N antisymmetric matrix [9]

��a;b;...���;�;...�
ij � �uivj � viuj��1 � 	�ui~vva � vi~uua��uj~vv� � vj~uu�� � �ui~vvb � vi~uub��uj~vv� � vj~uu�� �    � �i$ j�
:
Pfaffian wave functions (2) were first constructed in
Ref. [3] as CFT conformal blocks. This MR state is the
exact ground state for a special three-body Hamiltonian
[11] and is also thought to pertain to realistic two-body
interactions in the first excited Landau level [4]. The
presence of quasiholes in the ground state is dictated by
the incommensuration of the flux with the electron num-
ber. Physically, the MR state can be thought of as p-wave
BCS pairing of composite fermions at zero net field with
quasiholes being the vortex excitations [3,12,13]. Each
quasihole has charge e=4 and corresponds to half a quan-
tum of flux (because of the paired order parameter [3]).
Equation (2) describes a state with quasiholes created in
two equal-size groups: �~uua; ~vva�; �~uub; ~vvb�; . . . and �~uu�; ~vv��;
�~uu�; ~vv��; . . . . Different quasihole groupings realize a
space with degeneracy 2n�1 [10,14]. (Even though there
are 2n!=2�n!�2 ways to arrange 2n quasiholes into
two groups of n, the resulting wave functions are not all
linearly independent.) In the presence of finite-range in-
teractions, the exact degeneracy may be split by an
amount exponentially small in the large vortex separation
[12]. In this case, infinitely slow braiding will not exhibit
non-Abelian statistics, although for a very wide range of
intermediate time scales, such statistics should apply [12].
The effects of disorder on the statistics are only partially
understood [12].

Consider an orthonormal basis ’i, with i � 1; . . . ;
2n�1, for the subspace with 2n quasiholes, which is lo-
cally smooth when parametrized by the quasihole coor-
dinates. In order to determine the braiding statistics, we
find the transformation ’i ! Uij’j under the evolution
operator after two of the quasiholes are interchanged
while the others are held fixed. The unitary matrix Uij
is obtained by first solving Eq. (1) and then projecting the
final basis onto the initial one. (Since we require ’i to be
only locally smooth, the basis itself can nontrivially
rotate after the quasiholes return to their original posi-
tions.) Equation (1) is integrated numerically: The differ-
ential equation is discretized and the wave-function
overlaps (the right-hand side of the equation) are evalu-
ated using the Metropolis Monte Carlo method. The
computational errors are easily evaluated by varying
the number of operations. We aim the calculation at ad-
dressing the following questions: (i) What is the Berry
phase accumulated upon quasihole interchange due to the
enclosed magnetic flux and due to the relative statistics?
(ii) What is the transformation matrix for the ground-
state subspace corresponding to the braiding operations?
In the following, we first describe the numerical method,
then present the results, and then compare them to CFT
predictions [3,10].

In order to integrate Eq. (1) numerically, the quasihole
interchange is performed in a finite number of steps. If
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U�l� is the value of the transformation matrix at the lth
step, then at the next step

U�l�1� � U�l�	1� A�l�=2
	1� A�l�=2
�1; (3)

where A�l�
ij � h’�l�1�

i � ’�l�
i j’

�l�1�
j � ’�l�

j i=2. Our choice
of the finite-element scheme (3) will become clear later.
In practice, in general we do not know an orthonormal
basis for the MR states (2) in an analytic form, but we
can numerically orthonormalize a set of 2n�1 linearly
independent Pfaffian wave functions  Pfi. Let B�l�

ij �

	 �l�
Pfi;  

�l�
Pfj
 denote the normalized overlaps of different

states. (It is implied here and throughout the Letter that
	 �k�

Pfi;  
�l�
Pfj
 � h �k�

Pfij 
�l�
Pfji=k 

�k�
Pfikk 

�l�
Pfjk is evaluated nu-

merically.) We then easily show that

A�l� � 	V�l�
yW�l�V�l�1�=2� H:c:; (4)

where W�l�
ij � 	 �l�

Pfi;  
�l�1�
Pfj 
 and V�l� is defined by

	V�l�
yB�l�V�l� � 1̂1, constructing an orthonormal basis
’�l�
i � V�l�

ji  
�l�
Pfj. We require V�l� to be locally smooth as a

function of the quasihole coordinates: The basis can
continuously transform while the quasiholes are moved,
but, e.g., sudden sign flips are not allowed.

According to Eq. (4), A�l� is anti-Hermitian, so that the
transformationU�l�1� is guaranteed to be unitary ifU�l� is
unitary. This explains our choice (3) for discretizing
Eq. (1). Another feature preserved by our numerical
scheme is that making a step forward,  �l�

Pfi !  �l�1�
Pfi ,

followed by a step backward,  �l�1�
Pfi !  �l�

Pfi, results in a
trivial transformation. We start at U�0� � 1̂1 and find U�ns�

after performing ns � 1 steps for braiding of two quasi-
holes (ns is increased to convergence). Because  �ns�

Pfi is
some nontrivial linear combination of  �0�

Pfi, we, finally,
have to project the transformation onto the initial basis:
U�ns� ! U�ns�OT , where O � 	V�0�
y�V�ns� and �ij �
	 �0�

Pfi;  
�ns�
Pfj 
. The resulting unitary transformation ma-

trix U then gives a representation of the braid group for
quasihole interchanges. In the following, we describe our
numerical experiments.

The space describing 2n � 2 MR quasiholes is non-
degenerate, so non-Abelian statistics cannot occur. There
is, nevertheless, a Berry phase accumulated from wrap-
ping these quasiholes around each other. Our calculation
of this phase for the MR state is analogous to the one
performed in Ref. [2] for the Laughlin state, except that
our calculation is numerical and therefore requires no
mean-field approximation. Let us first briefly recall re-
sults for the Laughlin wave function at filling factor � �
1=p. In the disk geometry, the Berry phase ( correspond-
ing to taking a single quasihole around a loop is given by
2� for each enclosed electron, i.e., ( � 2�hNi, where hNi
is the expectation number of enclosed electrons [2].
016802-2
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FIG. 1. The Berry phase ( for looping one MR quasihole
around the equator with another quasihole fixed at a zenith
angle ). N � 4; 8; 16; 32; 64 is the number of electrons. The
dashed line, (=� � �1=8, shows a naive prediction. For
cos) � 0, the two quasiholes approach each other very closely
and we see strong finite-size oscillations in the Berry phase. For
larger N and cos) (i.e., larger quasihole separation in units of
the magnetic length), ( appears to be converging toward zero.
(�� cos)� � �(�cos)�.
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FIG. 2. For ( > 0 (( < 0) filled symbols show the phase
accumulated by interchanging two quasiholes around a circle
with opening angle ) centered on the equator (north pole), for
various N as in Fig. 1. The straight dashed lines in the upper
half are 0:5�N � 1=4��1� cos)�, corresponding to the expec-
tation of the number of electrons enclosed by the loop. The
�1=4 accounts for the charge pushed out by one of the quasi-
holes. For (< 0, the dashed lines are �0:5�N � 1=4� cos), i.e.,
one-half of the number of electrons inside minus one-half the
number outside the loop. Open symbols, corresponding to a
similar calculation with one quasihole moving and the other
fixed at the center of the circle, almost overlay the filled
symbols, confirming the trivial relative statistics.
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FIG. 3. Same as the upper half of Fig. 2, but now with four
quasiholes present, two of which are fixed on the equator, at
� � �3�=4, and two interchanged, with initial and final
positions at � � �) on the equator. The straight dashed lines
are 0:5�N � 3=4� cos)� 1=4. Here, �3=4 accounts for the
average electron-density correction for the charge localized
at 2n� 1 quasiholes. The additional phase offset of �1=4
reflects the Abelian part of the braiding statistics, in agreement
with the predictions of Refs. [3,10].
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Therefore, when another quasihole is moved inside the
loop, the phase ( drops by 2�=p which implies fractional
statistics of the quasiholes. In spherical geometry [8], the
same result holds unless the south and north poles (which
have singularities in our choice of gauge) are located on
different sides of the loop. In the latter case, the Berry
phase is given by ( � �hNin � Nouti, where Nin�out� is the
number of electrons inside (outside) the loop. If a single
Laughlin quasihole is then looped around the equator, its
Berry phase vanishes, but if another quasihole is placed
above or below, the phase becomes ( � ��=p. We check
our Monte Carlo method by reproducing these results
numerically. The charge of the MR (� � 1=2) quasihole
is e=4, so that by analogy with the Laughlin state one
might naively expect that the Berry phase for looping one
quasihole around the equator with another fixed above or
below it is given by ( � ��=8 [11] (with an extra factor
of 1=2 due to MR quasiholes corresponding to only half
of the flux quantum). In Fig. 1 we show the numerical
calculation of ( for a MR system having two quasiholes,
one looped around the equator and the other held fixed. If
the two quasiholes approach each other too closely, we see
strong finite-size oscillations in the Berry phase. How-
ever, for larger separation, ( appears to be converging
towards zero, which was first predicted in Ref. [15] and
can be well understood using the plasma analogy [16].

Even though the relative statistics of two MR quasi-
holes are trivial, they do pick up a phase due to their
wrapping around the electrons, analogous to what oc-
curs in the Laughlin case. Figure 2 shows that as the
size of the system increases, the phase accumulated by
interchanging two quasiholes (filled symbols) or braiding
one around the other (open symbols) can be well approxi-
mated by assuming the wave function rotates by � for
each enclosed electron (compare to 2� for the Laughlin
state), when the poles are not separated by the loop (and
016802-3
the effect of the pole singularities is analogous to that in
the Laughlin state). Even for systems consisting of only
four electrons, this approximation stays quite good if we
correct the average electron density for the charge pushed
out by one localized quasihole (see the dashed lines in
Fig. 2). This method of correcting the average density also
works for the Laughlin state on the sphere.
016802-3
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FIG. 4. Parameters + and � defining transformation matrix
(5) for the same operations as ( shown in Fig. 3. The dashed
line shows 1=4, an approximation used for + in the text.
Similarly � can be approximated as zero [so that , in Eq. (5)
is not defined]. These approximations become better with larger
system size and for intermediate cos) when the quasiholes
remain farther apart. The symbol convention is the same as in
Fig. 3. Lines interpolate Monte Carlo results.
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We now turn to 2n � 4 MR quasiholes, which is the
simplest case when statistics can be non-Abelian (the
ground state has degeneracy 2). While the above results
for two quasiholes are anticipated by the plasma analogy
[16], one may need deeper CFT [3,10] arguments in order
to understand the following findings. In the calculation,
we first fix all quasiholes on the equator and then inter-
change an adjacent pair of them around a circle with
different opening angles ) centered on the equator.
Parametrizing a unitary matrix U by

U � ei(
�
ei+ cos�=2 ie�i,=2 sin�=2
iei,=2 sin�=2 e�i+ cos�=2

�
; (5)

we plot in Figs. 3 and 4 the results (in a convenient basis)
for the transformation U1 corresponding to the braiding
operation on one of the quasihole pairs. Because of the
rotational symmetry around the vertical axis, knowing
U1 we can deduce other transformations U2, U3, and U4

(for interchanges of pairs ordered along the equator) by
rotating and projecting the initial basis and correspond-
ingly transforming U1. It is then easy to show that U1 �
U3 and U2 � U4 due to the form (2) of the wave function.
Furthermore, we find numerically that U2 � FyU1F,
where F � �.z � .x�=

���
2

p
, .’s being the usual Pauli ma-

trices. This approximation is good within a few percent
for smaller systems and is even better for larger ones.

According to Fig. 4, we see that apart from the Abelian
phase (, U1 can be approximated by U1 � diag�1� i;
1� i�=

���
2

p
, with the disagreement becoming smaller for

larger systems. Using F, we can then construct all other
matrices Ui. After performing the above approximations,
we find that the unitary transformations corresponding
to the braid operators realize the right-handed spinor
representation of SO�2n� � U�1� (restricted to �=2 ro-
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tations around the axes) as predicted in Ref. [10] using
CFT. In addition to the usual relations required of a
representation of the braid group on the plane, on the
sphere the generators must obey an additional relation.
For the case of 2n � 4, for example, we expect to have
U1U2U3U3U2U1 � 1. One can easily show that (for gen-
eral n) the relevant representation of the braid group
predicted in Ref. [10] satisfies this additional relationship
up to an Abelian phase. (The failure of the Abelian phase
to satisfy this law is related to the gauge singularities and
will be discussed elsewhere.)

In summary, we formulated a numerical method to
study braiding statistics of FQH excitations and applied
it to perform the first direct calculation of the non-
Abelian statistics in the MR state. Our findings confirm
results previously drawn within the CFT framework.
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