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Narrow-Gap Luttinger Liquid in Carbon Nanotubes
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Electron interactions reinforce minigaps induced in metallic nanotubes by an external field and turn
the gap field dependence into a universal power law. An exactly solvable Gross-Neveau model with an
SU(4) symmetry is derived for neutral excitations near half filling. Charge excitations, described by a
sine-Gordon perturbation of Luttinger liquid theory, are composite solitons formed by the charged and
neutral fields with two separate length scales. Charge compressibility at finite density, evaluated in
terms of intersoliton interaction, exhibits a crossover from overlapping to nonoverlapping soliton state.
Implications for the Coulomb blockade measurements are discussed.
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while in a noninteracting system the two gaps are pre- 10 meV.
Electron interactions create a peculiar strongly corre-
lated 1D electron system [1–5] in single-wall metallic
Cabon nanotubes, the thinnest and the cleanest among
the currently available nanoscale quantum wires.
Luttinger liquid theory of nanotubes predicts [1,2] that,
since tube diameter is larger than carbon separation, the
1D electron coupling is mainly accounted for by the long-
range electron interaction (forward scattering), while the
exchange and umklapp scattering, as well as backscatter-
ing, are relatively weak [5]. Recent experimental work
[6–8] focused on Luttinger liquid effects in tunneling,
observed as characteristic power laws in the tunneling
current dependence on bias voltage and temperature.

Here we discuss Luttinger liquid effects in single-wall
nanotubes with a minigap at the band center induced by
an external perturbation. Such a minigap can be opened
by parallel magnetic field [9] or by the intrinsic curvature
of the tube [10]. The field- and curvature-induced gaps
were observed experimentally [11,12] and found to be in
agreement with the noninteracting electron model. We
show that electron interaction enhances the charging
gap and makes it a power law function of the bare gap.

This provides a unique situation, not available in other
quantum wires, when Luttinger liquid effects are mani-
fest in thermodynamical properties. For instance, in a
gapped state induced by magnetic field, the bare gap is
determined without any fitting parameters by Aharonov-
Bohm flux through tube cross section, while the charging
gap is directly measurable via Coulomb blockade, a prom-
inent feature of transport in nanotubes [13–18]. In the
strong forward scattering limit, the power law relation of
the charging gap and magnetic field is characterized by a
universal exponent 4=5. We emphasize that the charging
gap measurement is qualitatively different from the tun-
neling current measurement because it can be performed
in thermodynamic equilibrium.

Also, in the presence of interactions the charging gap is
much enhanced compared to the neutral excitation gap,
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cisely equal. Large energy separation of the charged and
neutral sectors results in high symmetry of the states in
the neutral sector described by multiplets of the group
O�6� � SU�4� derived from the exactly solvable Gross-
Neveau model. This picture, demonstrated in the situation
when the gapped state is created by external field, is
realistic, since the intrinsic interaction-induced gap in
nanotubes is believed to be extremely small.

Electron bands of metallic single-wall tubes form two
pairs of spin-degenerate right and left branches intersect-
ing at the band center [19]. The Hamiltonian in the
forward scattering approximation [1,2] has the form

H 0 � �i �hv
Z X4

j�1

 �
j �3@x jdx�

1

2

X
q

�qV�q���q;

(1)

where  j�x� is a two component wave function, ��x� �P
4
j�1  

�
j �x� j�x� is charge density, and v is Fermi veloc-

ity. The form of the forward scattering amplitude in
Eq. (1) depends on the electrostatic environment. In a
nanotube of radius r, in the absence of screening, V�q� �R
V�x�eiqxdx � e2 ln��qr��2 � 1�. The substrate dielec-

tric constant � reduces V�q� by a factor 2=��� 1�.
A field-induced gapped state [9,10] is described by

adding to the Hamiltonian (1) a backscattering term

V ext � �0

Z X4
j�1

 �
j �1 jdx: (2)

In the absence of interactions, V�q� � 0, the electron
spectrum is ��p� � 	�v2p2 � �2

0�
1=2 with the value of

�0 depending on the backscattering mechanism. The
magnetic field-induced gap [9] is linear in the field: �0 �
�hv�=r, where � � �r2B=�0 is the flux through the tube
cross section scaled by �0 � hc=e. For the typical tube
radius r ’ 0:5 nm and B ’ 10 Tesla, the gap �0 ’
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We bosonize the Hamiltonian H � H 0 �V ext in
the standard way, using  j / r

�1=2 exp�i
����
�

p
�j�. The

Gaussian part H 0 is diagonalized using linear combina-
tions of the bosonic fields �j � �eaj�a� with e0 �
1
2 �1; 1; 1; 1� and the unit vectors e1;2;3 orthogonal to e0

and each other. In this basis the Gaussian part of the
Lagrangian describes one charged and three (neutral)
flavor modes:

L0 �
1

2

X
q

f@��0�q�@��0��q� � Kqq
2�0�q��0��q�g

�
1

2

Z
dx

X3
a�1

�@��a�
2; Kq � 1 �

4

�
V�q� (3)

� �h � v � 1�. Bosonizing V ext � �0

R
dx

P
4
j�1�R

�
j Lj �

H:c:�, we have

L� � �2�
Z
dx

�X4
j�1

cos
�������
4�

p
�i

�
(4)

with � � �0=r. The total Lagrangian L � L0 �L� dis-
plays the fundamental U�1� � SU�4� symmetry playing a
major role in our analysis. Forward scattering makes the
perturbation (4) even more relevant. At zero chemical
potential the coupling � grows under renormalization
and opens spectral gaps.

There are several possible regimes in which a nano-
tube, described by Eqs. (3) and (4), may exist. First, there
is an insulating regime with the density at half filling,
where all excitations are gapped. Second, there are con-
ducting states which can be realized by applying various
external fields. These fields may close some gaps or even
all of them, provided their magnitudes exceed certain
critical values. For example, by varying chemical poten-
tial one can close all the gaps and make the perturbation �
irrelevant. This will lead to a transition into a metallic
(Tomonaga-Luttinger liquid) regime. Fields breaking the
SU(4) symmetry will not affect the charge sector and
thus leave the system insulating, but may close some of
the gaps in the flavor sector.

From Lagrangian (3) we obtain the scaling dimension
of the operator �R�

j Lj � H:c:�, equal to d � �3 � ��=4
with � � K�1=2. The renormalization group (RG) estab-
lishes the following general relationship between the bare
coupling constant and the spectral gap: �=D� �1=�2�d�.
Since the velocity in the charge sector undergoes a strong
increase, we also conclude that the charge gap contains an
additional numerical factor such that the charge and
flavor gaps are related to the noninteracting gap �0 as

�fl ’ �0�D=�0�
�1���=�5���; �ch ’ K1=2�fl; (5)

where D � �hv=r is 1D bandwidth. Since �0 is propor-
tional to the external magnetic field, Eq. (5) predicts a
power law scaling of the gaps versus an experimentally
controllable parameter. For high charge stiffnessKq � 1,
the gap scaling exponent is universal, with the value 4=5.
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The separation (5) of energy scales, originating from
the sharp difference in the velocities in the charge and
flavor sectors, enables one to integrate out the fast mode
�0 in the adiabatic approximation. This will generate an
effective action for the flavor modes with SU(4) symme-
try. Separating �0 in the Lagrangian (4) one obtains

L� � �4�
Z
dx�u1 cos ~��0 � u2 sin ~��0�; (6)

u1 �
Y3

a�1

cos ~��a; u2 �
Y3

a�1

sin ~��a; (7)

where ~��i �
����
�

p
�i. Treating the slow fields ui as adiabatic

parameters and shifting the variable

�0 ! �0 � "; " � ��1=2 tan�1�u2=u1�; (8)

we transform the total Lagrangian L � L0 �L� as

L � L0��0 � "� �
Z
dxM��a� cos ~��0 (9)

with M��a� � 2��1 �
P
a�b cos2 ~��a cos2 ~��b�

1=2. From
Eq. (9) we derive an effective action for the flavor sector
valid for energies well below the charge gap (5) by
integrating over the fast mode �0. Let us examine the
results of this integration. Writing the first term in (9) as
L0��0� �L0�"� �

P
!;qf�0gq�!2 � Kqq2�f"gq we note

that the "-dependent terms are strongly irrelevant. For
example, L0�"� contains squares of the gradients

@�" �
@��1 sin2 ~��2 sin2 ~��3 � permut:

1 �
P
a�b cos2 ~��a cos2 ~��b

(10)

consisting of a series of operators with the minimal scal-
ing dimension 2. The relevant contribution arises from the
last term of Eq. (9). Integrating it over �0 we obtain the
ground state energy of the sine-Gordon model

�M2=�2��=4���a� � �g
X
a�b

: cos2 ~��a cos2 ~��b: � . . . ;

(11)

where g is a suitably renormalized coupling constant and
dots stand for less relevant operators. The normal ordering
is taken with respect to the new cutoff G.

Thus at energies smaller than the cutoff G we obtain
the effective action for the flavor modes in the form of the
O�6� � SU�4� Gross-Neveau model:

L �
Z
dx

	
1

2

X3
a�1

�@��a�
2 � g

X
a�b

: cos2 ~��a cos2 ~��b :



�

Z
dx�i �((j)�@�(j � g : � �((j(j�� �((k(k� :�; (12)

where (j �j � 1; :::; 6� are Majorana fermions.We empha-
sise that the SU(4) symmetry here is exact being a sym-
metry of the original Hamiltonian. This makes this
model quite distinct from the effective models suggested
in [20,21], where high symmetries are supposed to
emerge at low energies as a result of renormalization.
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FIG. 1 (color online). Inverse charge compressibility scaled
by �hv plotted for several soliton widths w � �4��0��1=2.
Equation (23) was used with the screening length ls �
0:2 �m, v � 8 � 107 cm=s, � � 12, tube diameter d � 2r �
1 nm. Inset: electron soliton charge and flavor parts [Eqs. (14)
and (15)] scaled by �=2, with the stiffness K � 16. Step widths
for ~��0 and ~��1;2;3 differ by K1=2.
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The model (12) is exactly solvable [22]; the spectrum
consists of 3 � 6 � 3 relativistic particles with masses
m;

���
2

p
m;m transforming according to different represen-

tations of the O�6� � SU�4� group. Their dispersion law is
Ei�p� � �v2p2 �m2

i �
1=2. The Majorana fermions them-

selves belong to the vector representation of the group and
carry mass

���
2

p
m. The mass m coincides with the spin gap

�fl estimated by the RG equation (5), while the coupling
constant g in the Gross-Neveau model (12) is fixed by the
requirement that the latter model yields the correct neu-
tral excitation spectrum at the energies well below the
charge gap �ch.

The charge sector, described by the field �0, contains
nontopological neutral exciton modes as well as charged
topological excitations (solitons and antisolitons). To ob-
tain the spectrum of exciton modes, we linearize the
Lagrangian (9) in �0 near the saddle point �i � 0 (the
cosine maximum), which gives !2 � K�q�v2q2 � 4�M
withM ’ �2

fl. Thus the exciton spectral gap is of the same
order as the flavor gap.

As for the topological charge excitations, they carry
exactly the same quantum numbers as an electron. This
happens because whenever a soliton of �0 is created, it
acts as an effective potential in the presence of which the
flavor fields form bound states. The flavor fields coupled to
a �0 soliton give it the corresponding quantum numbers.
To elaborate on this we consider the process of soliton
formation in more detail.

In the original sine-Gordon problem (3) and (4), an
electron is represented by a soliton of one of the fields �j.
Soliton spatial size can be estimated from a variational
principle. Because of large charged stiffness K, the elas-
tic energy of the soliton is dominated by the field �0.
According to (3) and (4), the soliton energy, estimated
from the energy in the space interval l, where the field
�j�x� varies, is E�l� ’ �Kql�1l�2 � �0�l with renormal-
ized coupling �0�l� � ��r=l��3���=4. Soliton size w can
be found by minimizing the energy with respect to l.
Ignoring the logarithmic l dependence of K, this
gives w � �K=�0�w��1=2. The soliton energy E�w� ’
�K�0�w��1=2 coincides with the charge gap �ch in (5).

A peculiar feature of the composite charge soliton is
the presence of two different length scales, because the
flavor fields �1;2;3 vary faster than the stiffer charge field
�0. Let us consider a variational solution of the problem
L0 �L� with one of the fields �j varying between two
minima of the energy (4). To be specific, we consider a
soliton of the field �1 �

1
2 ��0 � � � � ��3� in which �1

changes by
����
�

p
, while �1;2;3 do not change. In this case all

fields ~��0;...;3 change by �=2. The length w over which the
field �0 changes is much larger than that for �1;2;3. Thus
the variational problem for ~��0 can be treated in a �=2
step approximation for ~��1;2;3, as

1
2K�

~��0
0�

2 � 4��0�1 � max�cos ~��0; sin ~��0�� (13)

(we treat K as a constant). The solution of Eq. (13) with
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~��0 � �=4 at x � 0, and the cos and sin terms contribu-
ting separately in the regions x > 0, x < 0, is

~��0�x� �
�
2 cos�1tanh�u� x=w�; x < 0;
�
2 � 2 cos�1tanh�u� x=w�; x > 0;

(14)

where w � �K=4��0�1=2 � �hv=�ch, u � tanh�1�cos�=8�.
The problem for the flavor fields is simplified because

they vary in the region where ~��0 � �=4. This gives

3
2
~��02 � 23=2��0�1 � cos3 ~�� � sin3 ~���; (15)

where ~�� � ~��1;2;3. Integrating Eq. (15) we obtain the
function ~���x�. As illustrated in the Fig. 1 inset, the ~��0

step is �
����
K

p
times wider than the ~��1;2;3 step. We empha-

size that composite solitons in which all four fields ~��i
vary are charge excitations of the lowest possible energy.

Now we consider multisoliton solutions and determine
charge compressibility from intersoliton interaction. The
compressibility ( � �d2En=d

2n��1, with n the electron
density, is directly related to the capacitance C �
dn=dVg and the charging spectrum measured in a
Coulomb blockade experiment. The charging spectrum
peak spacing is 3n � En�1 � 2En � En�1 � (�1. We
consider densitites smaller than l�1

s for which the charge
fields �0 of different solitons may overlap, while the
neutral cores with steps of �1;2;3 are isolated. The effec-
tive energy of the field �0 is obtained by minimizing (6)
with respect to ~��1;2;3 at each value of ~��0, which gives
�4�0 maxm cos� ~��0 �

�
2 m�. Switching between different

branches occurs at ~��0 �
�
4 �

�
2 m. Approximating cos by

a parabola near each maximum one obtains

U� ~��0� � 2�0min m� ~��0 � �m=2�2: (16)
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This approximation is extremely accurate, as one can
check by comparing Eq. (14) with the soliton solution

~��0�x� �

(
�
4 e

x=w; x < 0;
�
2 �

�
4 e

�x=w; x > 0
(17)

of the variational problem for the total energy

E� ~��0� �
Z
dx

�
1

2�
@x ~��0

bKK@x ~��0 �U� ~��0�

�
(18)

with the interaction kernel bKK � 3�x� x0� � 4
�V�x� x0�.

In a soliton lattice the field ~��0�x� is a continuous
monotonic function with smooth �=2 steps, as in the
Fig. 1 inset. To evaluate the energy (18), we introduce a
periodic discontinuous field ’ � ~��0 � �m=2 with inte-
ger m chosen to minimize U� ~��0�. The energy (18) with
~��0 � ’� �

2

P
m 7�x�ma� takes the formZ

dx
�

1

2�

	
@x’�

�
2
G�x�


bKK	
@x’�

�
2
G�x�



�2�0’2

�
;

(19)

where G�x� �
P
m 3�x�ma�. The advantage of the form

(19) is that this quadratic function can be easily mini-
mized in the Fourier representation. We obtain

’�q� � �iq
�
2
G�q�Kq=�Kqq2 � 4��0� (20)

with G�q� � 2�
P
n 3�qa� 2�n�. The energy of (20) is

E�’� �
X
q

4�0Kq

�
�
2
G�q�

�
2
�
�Kqq

2 � 4��0�: (21)

Using the identity G2�q� � LG�q�, with L the system
size, the energy density can be written as

E�n� � �hv
�n2

8

X1
m��1

4��0Kqm
Kqmq

2
m � 4��0

(22)

with qm � 2�m=a and soliton density n � 1=a.
Charge compressibility ( � �d2E�n�=d2n��1 obtained

from Eq. (22) with

K�q� � 1 �
2

�� 1

4e2

� �hv
ln��q2 � r�2�=�q2 � l�2

s �� (23)

that models screening (e.g., by a gate) at distance ls � r is
plotted in Fig. 1. At high density n� w�1, compressi-
bility is density independent, (�1

0 � �
4 �hv� 4e2

��1 ln�ls=r�.
At lower n� w�1 it varies as (�1 � (�1

0 � 4e2

��1 ln�rn�.
The overlapping solitons (nw > 1) interact via V�r� / r,
while nonoverlapping solitons interaction (at nw < 1) is
V�r� / 1=r, because electric field is screened and confined
to 1D at r � w and becomes deconfined at r � w.

The compressibility can be measured directly in a
Coulomb blockade experiment, where it determines the
spacing of peaks in the charge addition spectrum. As a
function of doping away from half filling, one can dis-
tinguish three different regimes. At small doping the
016401-4
nonoverlapping soliton picture applies, making the com-
pressibility (and hence the charging peak spacing) a
function of density (Fig. 1). At somewhat higher doping,
when the charge solitons overlap while the flavor fields at
their cores do not, the peaks will be equally spaced, since
the compressibility in this regime is density independent.
The crossover density n ’ w�1 is sensitive to the mag-
netic field which controls soliton size w � �hv=�ch.
Finally, at even higher doping, when the soliton cores
overlap, the exchange effects set on, the neutral sector
contribution to the energy becomes significant, and the
peak spacing acquires period 4 in the electron number.

To summarize, the compressibility variation with sol-
iton size is manifest in the charging spectrum near half-
filling dependence on the magnetic field. Along with the
power law field dependence (5) of the gap at half filling, it
represents the novel 1D electron correlation phenomenon
observable in a narrow gap state of nanotubes in thermo-
dynamic equilibrium.
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