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We present an experimental demonstration showing that, contrary to first intuition, the more
scattering a mesoscopic medium is, the more information can be conveyed through it. We used a
multiple input—multiple output configuration: a multichannel ultrasonic time-reversal antenna is used
to transmit random series of bits simultaneously to different receivers which were only a few
wavelengths apart. Whereas the transmission is free of error when multiple scattering occurs in the
propagation medium, the error rate is huge in a homogeneous medium.
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The ever-growing need for faster wireless communi-
cation in urban areas has brought to light interesting
connections between issues of communication engineer-
ing (how can one optimize the data transfer rate between
N antennas and M receivers?) and mesoscopic wave
physics. Indeed, both subjects have to do with the corre-
lations (in space, time, and frequency) of a diffuse wave
field propagating in a random medium.

When waves propagate through a disordered medium,
the key element is the ability of a communication system
to exploit independent ‘“‘channels” of propagation [1];
very roughly, the more heterogeneous and scattering the
medium is, the more degrees of freedom there are to
communicate through it. In the case of radio signals,
for instance, multiple paths arise because of scattering
and multiple reverberation on the buildings or indoors;
similar multipath phenomena are also frequently encoun-
tered in underwater acoustics. For radio signals, scatter-
ing permits one to exploit different polarizations of the
electromagnetic waves to convey more information than
in free space: Andrews et al [2] showed that the data
transfer rate in a scattering environment could be in-
creased 6 times, as long as the six components of the
electromagnetic field are uncorrelated with each other,
which therefore yields six independent channels. This
approach is based on the polarization decorrelation.
Another approach is to exploit spatial decorrelation:
with N antennas transmitting to M receivers, with N >
M, Shannon’s capacity (i.e., the maximum amount of
information conveyed without any error) can be N times
higher than with a single-transmitter and single-receiver
scheme [1,3,4].

We demonstrate here the efficiency of another approach
based not only on spatial decorrelation but also on fre-
quency decorrelation due to the randomness of the me-
dium. Indeed, unlike what happens in a homogeneous
medium (free space), the response of a highly scattering
medium can change dramatically even if the frequency is
changed by a small amount dw. This opens up another
way to exploit the variety of communication channels in a
scattering medium using time reversal. To that end, the

014301-1 0031-9007/03/90(1)/014301(4)$20.00

PACS numbers: 43.20.+g, 42.25.Dd, 72.10.Fk, 84.40.Ua

bandwidth Aw has to be as large as possible compared to
the correlation frequency 6. Moreover, the waveforms
that are sent or received must be completely controllable
both in amplitude and phase all along the bandwidth, in
order to perform a coherent treatment. For the time being,
in the gigahertz domain, electromagnetic antennas can-
not achieve this. But our experimental demonstration uses
ultrasonic waves, for which both conditions are met.

The propagation medium we considered in the experi-
ments is deliberately disordered and highly scattering: it
is a forest of parallel steel rods with density 18.75 cm ™2
and diameter 0.8 mm ( ~ 1.7 times the wavelength). The
typical distance between two scattering events is mea-
sured by the mean free path €. The sample thickness is
L = 40 mm, much larger than € which was found to be
4 mm [5]. As a consequence, when a short ultrasonic
pulse (typically 1 ws) is sent, the transmitted waveforms
received on the other side of the slab last several hundreds
of times the initial pulse duration (Fig. 1).

The experiment takes place in a water tank, and we
try to communicate to five different receivers with a
23-element array (Fig. 1) at a 3.2-MHz central frequency.

One simple way to address simultaneously different
receivers is time-reversal (TR) focusing [6]. In a first
step, the five receivers fire a 1-us pulse one by one; five
sets of N = 23 signals /;;(t) are recorded on the array and
digitized. If the array sends back the time-reversed sig-
nals h13;(—t) 1 = j = N, then the wave will focus back to
the receiver No. 3 and recover its initial duration, as if it
were traveling backwards in time. Since the system is
linear, it is also possible to send back any combination of
the h,-j(—t); for instance, in order to transmit a series of
positive and negative impulses such as {+1 —1—1+
1 —1}, one has to send back hy;(—1) — hyi(—1) —
h3;(—t) + hyj(—1) — hs;(—t), 1 = j = N. Then five short
pulses will arrive simultaneously to the five receivers
(Fig. 2). If one wants to transmit five different series of
K pulses with various signs, the signal to be sent back by
the jth element is Y& | >3, ayh,;; (=1 + kT), with a;; the
amplitude of the kth pulse to be transmitted to the ith
receiver and T the delay between two pulses.
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FIG. 1. Top: Experimental setup. An ultrasonic array (central
frequency 3.2 MHz, pitch 0.4 mm, total aperture 9.2 mm)
communicates to five points simultaneously through a multiple
scattering medium. The distance between neighboring re-
ceivers is 2 mm. Bottom: typical waveform scattered by the
medium when a 1-us pulse is sent through it by the array to the
receivers.

We used this approach to transmit simultaneously five
random and uncorrelated series of K = 2000 bits each to
the five receivers, with N = 23 transmitters. The result
was that all bits were correctly transmitted through the
scattering medium, whereas the error rate was 28%
through water. The reason for these errors is cross talk
between the receivers. Indeed, in a homogeneous medium
such as water, the resolution of the array is diffraction
limited: the array size is D = 9.2 mm, the wavelength
A~ 0.47 mm, and the distance z = 27 cm, so Az/D ~
13.8 mm (Fig. 3). Since the receivers are only 2 mm apart,
the messages overlap. On the contrary, it was shown [7,8]
that due to multiple scattering, a finite-size TR array
manages to focus a pulse back to the source with a spatial
resolution that beats by far the diffraction limit in the
homogeneous medium: it is limited only by the correla-
tion length of the scattered field and no longer by the
array aperture; as the wave is completely scrambled by
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FIG. 2. The five sets of twenty-three impulse responses ;;(t)
1=i=5,1= ;=23 have been recorded and time reversed.
The linear combination is retransmitted by the array, and the
resulting waves travel backwards to the receivers. Through a
multiple scattering medium (top) we observe five short pulses
very well focused on each receiver. Through water, the pulses
overlap, hence a strong cross talk between the receivers.

multiple scattering and loses its coherence, the correlation
length of the scattered waves is of the order of the wave-
length and so is the spatial resolution of the focal spot. As
to the peak-to-noise ratio of the focal spots, it depends
obviously on the number of receivers since each of them
receives its bitstream, plus noise due to the bitstreams
going to all the others and on the number of transmitting
elements. It also highly depends on the bandwidth, as we
now argue.

To simplify the discussion, let us consider a situation
where only one transmitter is used, instead of an array, to
focus on some receiver. In this case, TR focusing can still
be achieved (Fig. 3). Here the importance of frequency
decorrelation must be emphasized [7]. Imagine a single
element trying to focus on the same receiver but in a
narrow frequency bandwidth; the phase-conjugated wave
has no reason at all to be focused on this receiver since the
element sends back only a sinusoidal spherical wave
through the medium. But if the frequency bandwidth
Aw is much larger than the correlation frequency Sw,
then the spectral components of the scattered field at two
frequencies apart by more than dw are decorrelated and
there are roughly Aw/8w decorrelated frequencies in the
scattered signals. When we time reverse (i.e., phase con-
jugate coherently all along the bandwidth, and not just at
one frequency) all these components, they add up in phase
at the receiver position, because all the phases have been
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FIG. 3. Directivity of the time-reversed waves around the
desired focal point. Top: Comparison between the multiple
scattering medium (solid line) and water (dashed line), for a
23-element array; the —6 dB widths are 1.1 mm and 10.3 mm.
Bottom: Comparison between quasimonochromatic (3.2 MHz,
dashed line) and wideband (solid line) focusing through the
multiple scattering medium, for a single element.

set back to 0 all along the bandwidth. Thus, the amplitude
at this position increases as Aw/8w, whereas outside the
receiver position, the various frequency components add
up incoherently and their sum rises as y/Aw/dw. On the
whole, the peak-to-noise ratio increases as \/Aw/8w as
the bandwidth is enlarged. Through the forest of rods, we
found dw ~ 10 kHz; the total bandwidth at half maxi-
mum is 1.5 MHz, the frequency ratio is therefore ~150,
thus an improvement of more than 20 dB compared to a
monochromatic phase conjugation technique.

Therefore, the data transfer rate of a TR antenna highly
depends both on the ratio Aw/Sw, giving the number of
uncorrelated frequencies, and on the number of indepen-
dent focal spots it can generate in the receivers plane at
one frequency. In a homogeneous medium [9] this number
equals the rank of the propagation matrix that appears in
Shannon’s capacity, which we now discuss.

In the case of a one-to-one communication scheme,
Shannon [10] proved the following theorem in 1948: if a
receiver receives a complex-valued signal with a zero-
mean Gaussian distribution (variance §) plus a complex
noise with a zero-mean Gaussian distribution (variance
N), then the maximum number of error-free bits that can
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be decoded is log,(1 + S/N). This number is expressed in
bits per second and per Hertz, indicating that it grows
linearly with AwT, with Aw the frequency bandwidth
and T the duration of the transmission. Shannon’s formula
was recently generalized [1] to the case of N transmitters
and M receivers: if the signals transmitted by each ele-
ment are uncorrelated, Shannon’s capacity is given by
C = log,(det[I + p'H*H]) bits/s/Hz, with p the signal-
to-noise ratio, / the identity matrix, and H the N X M
propagation matrix. H is the Fourier transform of the
point-to-point impulse responses £;;(z). Interestingly,
'H*H is the time-reversal operator [9] which would de-
scribe a TR sequence between N transmitters and M
receivers. Indeed, imagine that the N transmitters send
N waveforms ¢;(¢) (i = 1, ..., N), which can be described
in the Fourier domain by a set of vectors E with N
components for each frequency. The M-component re-
ceived “‘vectors” can be written as a matrix product
HE. When the signals are time reversed (i.e., phase con-
jugated in the Fourier domain) and retransmitted, the
resulting vector is 'HH*E*. At this step, it is worth
performing a singular value decomposition of H to get
a more physical insight into the capacity: H can be
written as UD'V*, where U and V are unitary matrices
and D is a diagonal matrix whose elements are the sin-
gular values A;. Thus, ‘H*H = VD*V* which means that
the eigenvalues of the time-reversal operator are the
squared singular values of the propagation matrix. Then
C can be rewritten as log,(det[/ + pVD*V*]) =
Z?E(M’N) log,(1 + pA?). This formula implies that each
significant eigenvalue of the time-reversal operator adds
an independent ‘“‘channel” of propagation which contrib-
utes to increase the capacity.

With ultrasonic devices, the propagation matrix H can
be easily measured. To that end, we have used two 40-
element 0.4 mm-pitch arrays at a distance z = 27 cm and
measured the 1600 interelement impulse responses /;;(1)
through water and through the multiple scattering sample
described above. After a Fourier transform of A; j(t), H is
known for a whole set of frequencies. For each frequency,
we applied a singular value decomposition. The singular
values of H are represented on Fig. 4; through the scatter-
ing medium, the number of singular values is much
higher than through water and H has a higher rank.
Physically, this increase is related to the possibility of
talking to different receivers by focusing on them with a
TR array. The number of significant singular values (or
“degrees of freedom”) is roughly the number of indepen-
dent receivers we can talk to through the medium in a
given region of space and at a given frequency. However,
Shannon’s formula is essentially monochromatic. In a
wide-band coherent technique such as TR, the whole
bandwidth must be taken into account. Then the total
number of degrees of freedom is roughly the number of
significant singular values at the center frequency multi-
plied by frequency ratio Aw/Sw.
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FIG. 4. Singular values of the propagation operator H
through water (top) and through the multiple scattering me-
dium (bottom). At the central frequency (3.2 MHz), there are
34 singular values for the scattering medium and only 6
through water (with a —32 dB threshold relatively to the first
singular value).

Our experimental results demonstrate that high-order
scattering in a disordered medium [11] can help by in-
creasing the information transfer rate, especially if the
time-reversal technique is used to naturally focus the
different bitstreams onto the receivers. The first key pa-
rameter in that experiment is the number of independent
focal spots that can be created by the transmitting array
in the receiving plane, which is also the number of differ-
ent receivers one can address simultaneously. At a given
frequency, this number is directly related to the number of
significant singular values of the propagation matrix or
the number of eigenvalues of the time-reversal operator,
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which are basically the same. In the ultrasonic range, the
time-reversal operator which is studied in mesoscopic
physics and whose trace gives the conductance [12] can
be easily measured. The second key parameter is the
number of uncorrelated frequencies within the band-
width, which governs the peak-to-noise ratio on each
receiver; in the medium we studied, we have Aw/8w ~
150. Could these ideas be applied to radio signals? Having
complete control of the field amplitude and phase over a
very large frequency band is possible in everyday labora-
tory life for ultrasonic waves as well as in ocean acoustics
[13], but for the time being, applying wide-band coherent
techniques such as time reversal to electromagnetic waves
remains a technical challenge.
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