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The quantum to classical transition for a system depends on many parameters, including a scale
length for its action, /i, a measure of its coupling to the environment, D, and, for chaotic systems, the
classical Lyapunov exponent, A. We propose measuring the proximity of quantum and classical
evolutions as a multivariate function of (%, A, D) and searching for transformations that collapse this
hypersurface into a function of a composite parameter / = h*A#D?Y. We report results for the quantum
Cat Map and Duffing oscillator, showing accurate scaling behavior over a wide parameter range,
indicating that this may be used to construct universality classes for this transition.
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The classical description of a system approximates the
inherently quantum world and has significantly different
predictions. The question of when quantum mechanics
reduces to classical behavior is both fundamentally inter-
esting as well as relevant to applications such as quantum
computing which seek to exploit this difference. The
quantum to classical transition (QCT) is now understood
to be affected not only by the relative size of /i (Planck’s
constant) for a given system but also by D, a measure of
the coupling of the environment to the quantum system of
interest, an effect termed decoherence. Further, in sys-
tems where the classical evolution is chaotic, the transi-
tion is also influenced by the chaos, and thus by A, the
Lyapunov exponent of the classical trajectory dynamics
[1,2]. Other work has addressed correspondence via the
continuous extraction of information from the environ-
ment [3]. Here again, the condition for correspondence
depends on both 7 and a parameter similar to D repre-
senting the measurement strength. As such, the QCT
for general chaotic Hamiltonians is a complicated func-
tion of multiple parameters and is far from being fully
understood.

However, progress has recently been made on various
fronts. It has been argued that Hamiltonian systems fall
into universality classes with distinctly different QCTs
[4], behavior manifested in the density matrix far from
the transition regime. Several studies also suggest that the
behavior does not depend independently upon each of the
three parameters. Specifically, considerations [1,2,5-8]
of stochastic quantum evolution or a master equation
argue that the classical limit, in particular, relates to a
composite parameter involving £, D, A. With these and
analytical arguments given below as motivation, we con-
jecture that crucial regions of the multiparameter QCT
may, in fact, be collapsed via scaling relationships
between these parameters. In particular, we propose
(a) computing measures which directly reflect the “dis-
tance” between quantum and classical evolutions as a
function of /i, A, and D and then (b) searching for trans-
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formations that collapse the resulting hypersurface onto a
function of a composite parameter of the form J =
h¥ABDY. The aims are (i) to search for this scaling,
especially the coefficients «, B, v [9], (ii) to investigate
the range of parameters over which the scaling holds, and
(iii) to study the dependence of the distance measure on
{. This is expected to uncover universal behavior and
considerably enhance our map of the quantum-classical
boundary for nonlinear Hamiltonians.

We start with broad arguments for such scaling and
then introduce measures of the quantum-classical dis-
tance including a generalized Kullback distance [10]. We
then numerically test our ideas on the noisy quantum Cat
Map. For this system, A is a constant, such that the QCT
is at most a two-parameter transition. We show that
this transition, in fact, reduces to an effective single-
parameter transition. The scaling is remarkably sharp
and extends over a large parameter range. Therefore, in
the Cat Map, the quantum nature of the system is a well-
defined function of an effective Planck’s constant, / =
R*AD™!, consistent with previous analysis [7]. We discuss
the nature of the transition in some detail. We then present
results for a quantum Duffing oscillator coupled to the
environment and show that its transition regime is re-
markably similar to that of the Cat Map. This suggests the
existence of a universality class for the QCT for com-
pletely chaotic systems. We conclude with possible ex-
pectations for the decoherent QCT in general nonlinear
systems.

Consider a quantum Wigner quasiprobability p" evolv-
ing under a Hamiltonian H with potential V(g) while
coupled to an external environment [1]:

ﬁZn —1)" a2n+lv 82n+1 w
ot Z2 "2n+ 1) gt gpt
n=1 q V4

+ DV2pW. (1)

ap"

The first term on the right is the Poisson bracket, generat-
ing the classical evolution for p". The terms in / add the
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quantal evolution, while the effects of the environmental
coupling are reflected in the diffusive term. For simplic-
ity, we couple to all phase-space variables, although the
results generalize. Consider for the moment only the
classical evolution in the presence of the environmental
perturbation. Chaos causes the density p to develop fine-
scale structure exponentially rapidly, with a rate given by
a generalized Lyapunov exponent. When the structure
reaches sufficiently fine scales, the noise becomes impor-
tant, acting to wipe out (or coarse-grain) fine-scale struc-
ture. The competition between chaos and noise is moni-
tored by x* = Ti[p"'V?p"]/Tr{(p")*] = —Td{|Vp" ’1/
Tr[(p")?], obtained by an integration by parts and where
Tr denotes the trace over all variables. This quantity y*
measures the structure in the distribution [11]. For sys-
tems with both classical chaos and noise, y? arrives at the
metastable value x** =Y, AJ,/2D = A/2D where the
AZ ; are generalized positive Lyapunov exponents
[10,12]. The quantum mechanical corrections, of the
form ﬁZn[aZnJrl V(q)/anrHr1](62n+1pW/ap2n+l), scale as
R¥ Xy ly@ntl(x), where V(") denotes the rth deriva-
tive of V. Since the classical y? for chaotic systems settles
to the fixed value A/2D, the first difference between the
quantum and classical evolution equations can be esti-
mated to be ¢ = A2 A"T1/2D=(1+1/2y@n+1) (1) where x ~
x ' =+/D/A. Therefore, quantum-classical distances
should scale, in complete generality, with the single pa-
rameter { for small {. The particular form of { depends
on the details of H and, in general, on the difference
between the quantal and classical propagators.

As a measure of the distance between two distributions
P and Q with support on the same space, we introduce

K(P, Q) = = In(Ti[PQ<]) — In(Te[P'*<])
+ In(Te[P<Q]) — In(Tr{ Q"D (2)

K. is a generalized Kullback-Liebler (K-L) distance,
which reduces to a symmetrized version of the usual
K-L distance [10] in the limit € — 0. K, has similar
properties and is a general measure of the distance
between the two probability distributions. When P and
Q are identical, this measure is zero. A convenient form
of K. is for e =1 when it reduces to K,;(P,Q) =
In[Tr[ P2 ]T 0]/ (T PQO]?].

We begin with an initial phase-space distribution p,
which is propagated in time using separately (i) the quan-
tum dynamics to yield pw(7) and (ii) the classical dy-
namics for p.(7). During the propagation, the distance
K, (pw, p.) is monitored. K;(t = 0) = 0, and due to dif-
fusive noise all initial distributions relax to the constant
distribution, such that K,(t — oc0) = 0, whence K; is a
bounded function of time. For a given set of parameters
h, D and a reasonably long time #,,(>> 1/A), the maximal
value of K{'(py, p.) is our measure of the quantum-
classical distance.

We now consider a simple but extensively studied sys-
tem, the noisy quantum Cat Map [2,7,13]. The classical
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limit displays extreme(uniformly hyperbolic) chaos, and
as such the system is expected to belong to a distinct
universality class. The uniform hyperbolicity also pre-
cludes any dependence on initial conditions. The dynam-
ics derive from the kicked oscillator Hamiltonian [14]

H=p*2u+eq?/2 > 8(s—1/T), (3)

§=—00

restricted to the torus 0 < g <a, 0 =< p < b, with the
parameter constraints Th/ua =1 and —eTa/b = 1.
The chaos here results not from the nonlinearity of the
Hamiltonian but from the choice of (reinjected) boundary
conditions. As such, the general equation Eq. (1) does not
apply. However, the first quantum correction to the clas-
sical propagator for the Fourier-transformed distribution
is of order Ak for the Fourier mode k [13]. The quantum-
classical distance for this system should then behave as
Ry, implying that [15] £ = h%*x? = hi*AD™'. The top
panel of Fig. 1 shows K" as a function of /, D. The lower
panel shows the same data as a function of the composite
variable ¢ = /i>/D. The reduction of the surface to a line
demonstrates the scaling between /i, D, with the accuracy
reflected in the lack of discernible spread around the
curve. Remarkably, the scaling extends over many orders
of magnitude in /, D and a considerable range in K.

The graph of K7' versus { has a number of distinctive
features: (i) KJ" is monotonic in /, although as argued
below, this need not be generally true. (ii) The distance
K, is bounded due to the noise, as seen in the saturation as
{ increases. (iii) The quantum-classical distance is non-
linear in ¢, with K7({) initially growing slowly as a
function of £, followed by a rapid transition at In(¢) = 0
or { = 1, which is consistent with previous results [2,7,8].
These results indicate distinct regimes of small and large
quantum-classical distance, understood as follows: in
chaotic dynamics, a classical p develops fine-scaled struc-
ture very quickly (x> grows rapidly), increasing its en-
tropy production rate as well as its sensitivity to external
noise. For this class of systems, in the regime { <1, a
quantum p initially remains close to the classical, con-
sequently increasing its entropy production rate and
the rate at which it becomes a mixed state. Hence, quan-
tum effects are suppressed by noise, and the quantum-
classical distance remains small for all times. In
this regime, the environment minimizes the quantum-
classical difference. For { > 1, the quantum p does not
initially follow the classical p to finer scales and does not
become sensitive to noise. It then remains far from clas-
sical even as the noise alters the classical system. Here,
the environment exaggerates the differences between
quantum and classical probability dynamics. As such,
{ = 1 acts as a “quantum-classical boundary” separating
qualitatively different behaviors.

Our scaling analysis is general and it should be visible
in other measures of the quantum-classical distance. In
Fig. 2 we show results for an alternate measure D y?,
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FIG. 1. Top: Maximal Kullback-Liebler distance K}' as a

function of / and D, for the quantum Cat Map. Note that small
values reflect strong similarity between classical and quantum
evolutions. Bottom: Same data plotted in terms of a composite
parameter reflecting scaling behavior.

which is strictly quantum mechanical and is related to the
spread of structure to finer scales. The supremum value in
time of Dy? ( = Dy?2,) is considered with varying /i, D
and for the same time scales as before (classically, we
would get a constant [12]). Again, the precision and range
of the scaling is remarkable. The qualitative conclusions
are exactly the same as for K1,(¢), with a similar rapid
transition between large and small values of D y2,, hap-
pening again at { = 1. However, this curve has a distinc-
tive dip near { =~ 1, such that the peak is at finite . This
has been seen previously [11] and can be understood by
the fact that, for near-classical quantum dynamics, the
quantum follows the classical distribution but carries
interference fringes on top of the classical structure. As
such, the quantum distribution can be more sensitive to
noise than the classical counterpart. To see this, as above
pw = p. + ahyp where a is some constant. Therefore,
the quantum and classical x* are related as x; =~ xz +
alix’® so that to zeroth order x7, = x¢, where the subscript
on x, indicates the order. To first order, we substitute the
zeroth order expression for x* to get x7, ~ x¢ + alix?.
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FIG. 2. Top: This measure reflects the generation of fine-scale
structure in the dynamics with larger values corresponding to
classical dynamics. Bottom: Same data plotted in terms of a
composite parameter. Note the same scaling as in Fig. 1 and the
coincidence of the transition region.

Iterating to second order we get terms such as [16] X312 =~
X2+ alix3(1 + aliy.)*’%. For small afi, this becomes

X2 = XAl +aliy, +3a**x: +3a° B2 + ..)
~ 21+ a2+ bl + e+ ), 4)

where a/, b, ¢ absorb all other constants and we have
substituted /2 x> = £. Since initially quantum dynamics
reduces the value of x?, a’ (and consequently ¢) must be
negative valued constants, while b is positive. For appro-
priate values of @/, b, ¢, Eq. (4) then indeed accounts for
the shape of the curve seen in Fig. 2. Therefore, all
measures of quantum-classical distance need not depend
monotonically on the system parameters.

The smoothness and breadth of the scaling can be
attributed to the uniform hyperbolicity of the Cat Map.
However, the conclusions seem to transfer surprisingly
well to a less formal system. We have studied the Duffing
problem, with V(x) = —ax?® + bx* + cxcos(w?). Here
the symmetrized K-L distance was measured between
the classical and quantal autocorrelation functions
{T1[ p(£) p(0)1}. In the deep chaotic regime where the phase
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FIG. 3. K%, the K-L distance computed between classical and

quantal autocorrelation functions for the Duffing oscillator
with /i = 1 (solid), 1/+/2 (dashed), 3 (dotted). The /i2/D scal-
ing clearly brings the three disparate curves (inset) together.
The Duffing parameters are a = 10, b = 0.5, ¢ = 10, and
w = 6.07.

space is almost entirely chaotic but not uniformly hyper-
bolic, scaling similar to the Cat Map is seen, as shown in
Fig. 3. The only quantum correction term for the Duffing
problem is precisely of the form to yield a #2/D depen-
dence for the scaling. For technical reasons, the initial
conditions depend upon the choice of /, which may be
why the extreme quantum limit shows differing satura-
tion points. Notice that there is an almost equally sharp
QCT for this system as well, suggesting that the argument
above about qualitatively different sensitivities to noise
holds, independent of uniform hyperbolicity in the cha-
otic regime. Interestingly, such scaling is not seen for the
Duffing in the integrable limit as, for example, when the
driving is turned off. This confirms that the balance
between chaos and noise leading to the metastable value
of x? is responsible for the scaling and is indirect evi-
dence for the role of the Lyapunov exponent in this scal-
ing. Moreover, the similarity in the QCT (including the
sharp transition) for two very disparate systems—the
first a formal system with chaos due to boundary con-
ditions and the other with an analytic potential and non-
uniform behavior—suggests a universality class for
quantum-classical transitions.

The behavior of mixed phase systems, where chaotic
and regular dynamics coexist, and of higher-dimensional
systems now becomes a matter of interest that is being
currently explored. We can anticipate two possible out-
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comes: first, that «, B, y are independent of the Hamil-
tonian. This unlikely scenario is not supported by our
analytical predictions but, were it to hold, a modified
Planck’s constant would govern all quantum chaotic sys-
tems, with possible universality classes arising from the
dependence of a distance measure on . Second is that
systems show a range of behavior for «, 83, v, including a
dependence on initial conditions. Specifically, the scaling
may be related to the nature (single-scale, multiscale) of
the quantum coherence affected by the environment. In
this scenario, scaling would exist only for limited classes
of systems, and the existence or range of scaling may be
used to define universality classes.
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