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Self-Organized and Driven Phase Synchronization in Coupled Maps
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We study the phase synchronization and cluster formation in coupled maps on different networks. We
identify two different mechanisms of cluster formation: (a) self-organized phase synchronization which
leads to clusters with dominant intracluster couplings and (b) driven phase synchronization which leads
to clusters with dominant intercluster couplings. In the novel driven synchronization the nodes of one
cluster are driven by those of the others. We also discuss the dynamical origin of these two mechanisms
for small networks with two and three nodes.
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tion of the intercluster couplings in the dynamics of the
difference variables.

cluster of nodes is phase synchronized if all pairs of nodes
of that cluster are phase synchronized.
Presently, there is considerable interest in complex
systems described by networks or graphs with complex
topology [1]. Most networks in the real world consist of
dynamical elements interacting with each other. Thus in
order to understand properties of such dynamically evolv-
ing networks, we study a coupled map model of different
networks. Coupled maps show rich phenomenology that
arises when opposing tendencies compete: the nonlinear
dynamics of the maps which in the chaotic regime tends
to separate the orbits of different elements and the cou-
plings that tend to synchronize them. Coupled map lat-
tices with nearest neighbor or short range interactions
show interesting spatiotemporal patterns, and intermit-
tent behavior [2]. Globally coupled maps, where each
node is connected with all other nodes, show interesting
synchronized behavior [3]. Reference [4] gives some of
the papers which shed light on the collective behavior and
synchronization of coupled maps/oscillators with local
and nonlocal connections on different networks.

In this paper we study the mechanisms for synchron-
ization behavior of coupled maps on different networks.
In particular, we concentrate on networks with a small
number of connections, i.e., the number of connections
(Nc) is of the order of the number of nodes (N). Our study
reveals two different ways for the formation of synchron-
ized clusters. (a) Synchronized clusters can be formed
because of intracluster couplings. We will refer to this
as self-organized synchronization. (b) Synchronized clus-
ters can be formed because of intercluster couplings. Here
nodes of one cluster are driven by those of the others. We
will refer to this as driven synchronization. We are able to
identify ideal clusters of both types as well as clusters of
the mixed type where both ways of synchronization con-
tribute to cluster formation. We will discuss several ex-
amples to illustrate both types of clusters. Dynamically,
our analysis indicates that the self-organized behavior has
its origin in the decay term arising due to intracluster
couplings in the dynamics of the difference variables
while the driven behavior has its origin in the cancella-
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Consider a network of N nodes and Nc connections. Let
each node of the network be assigned a dynamical vari-
able xi; i � 1; 2; . . . ; N. The evolution of the dynamical
variables is given by

xit�1 � �1� ��f�xit� �
�P
j Cij

X
Cijg�x

j
t �; (1)

where xin is the dynamical variable of the ith node at the
tth time step, and C is the adjacency matrix with elements
Cij taking values 1 or 0 depending upon whether i and j
are connected or not. The matrix C is symmetric with
diagonal elements zero. The function f�x� defines the
local nonlinear map and the function g�x� defines the
nature of coupling between the nodes. In this paper, we
present the results for the local dynamics given by the
logistic map f�x� � 
x�1� x� and two types of coupling
functions, g�x� � x and g�x� � f�x�.

Synchronization of coupled dynamical systems may be
defined in various ways [5]. Perfect synchronization cor-
responds to the dynamical variables for different nodes
having identical values. Phase synchronization corre-
sponds to the dynamical variables for different nodes
having values with some definite relation [6]. For net-
works with Nc � N, we find that perfect synchronization
leads to clusters with a very small number of nodes, while
phase synchronization gives clusters with a large number
of nodes. Here, we concentrate on phase synchronized
clusters. We define the phase synchronization as follows
[7]. Let ni and nj denote the number of times the variables
xit and xjt , t � 1; 2; . . . ; T for the nodes i and j, show local
minima during the time interval T. Let nij denote the
number of times these local minima match with each
other. We define the phase distance between the nodes i
and j as dij � 1� 2nij=�ni � nj�. Clearly, dij � 0 when
all minima of variables xi and xj match with each other
and dij � 1 when none of the minima match. We say that
nodes i and j are phase synchronized if dij � 0. Also, a
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We find examples of both self-organized and driven
types of phase synchronized clusters in different net-
works that we have studied. For small coupling strengths,
we observe turbulent behavior, i.e., no clusters are
formed, but as the coupling strength increases phase
synchronized clusters are formed. The number and sizes
of clusters as well as their type (self-organized, driven, or
mixed) depends on the coupling strength � as well as the
type of coupling function g�x�. For networks with a
number of connections of the order of N, and for linear
coupling g�x� � x, we observe self-organized phase
synchronized clusters for small coupling strengths (��
0:18) and driven phase synchronized clusters for large
coupling strengths with a crossover and reorganization of
nodes between the two types as � is increased. This
behavior appears to be approximately independent of
the type of network. On the other hand, for nonlinear
coupling g�x� � f�x�, we observe a dominant driven
phase synchronization. In this case, the sizes and number
of clusters depend on the type of network for large �
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FIG. 1. The figure shows several examples illustrating the self-o
chosen to demonstrate the two different ways of obtaining synchron
figures show node versus node diagram for N � NC � 50. After
clusters are studied for T � 100. The logistic map parameter 
 �
coupled and the open circles show that the corresponding nodes
reorganized so that nodes belonging to the same cluster are num
synchronization for a scale-free network for g�x� � x and � � 0:1
network for g�x� � x and � � 0:85. (c) Mixed behavior for a sca
driven behavior for a scale-free network for g�x� � f�x� and � � 0
nearest neighbor couplings for g�x� � x and � � 0:14. (f) An ideal
nearest neighbor couplings for g�x� � f�x� and � � 0:15. The scale
adding one node with m � 1 couplings at each stage of the growth
proportional to the degree of the node (see Ref. [9] for details).
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values. As noted earlier, in this Letter we concentrate
only on the mechanism of cluster formation and other
details will be discussed elsewhere [8].

We now present the numerical results of our model.
Starting from random initial conditions and after an
initial transient, we study the dynamics of Eq. (1) and
determine synchronization behavior. Figure 1 shows
several examples of clusters illustrating different behav-
iors. Figure 1(a) shows two clusters with an ideal self-
organized phase synchronization. We note that except one
coupling, which must be present since our network is
connected, all other couplings are of the intracluster
type. Figure 1(b) shows the opposite behavior of two
clusters with an ideal driven phase synchronization.
Here, all the couplings are of the intercluster type.
Figures 1(c)–1(e) show mixed behavior. Figure 1(c)
shows clusters of different types. The largest two clusters
have approximately an equal number of intercluster and
intracluster couplings (mixed type), the next two clusters
have dominant intracluster couplings (self-organized
50 0 25 50

rganized and driven phase synchronization. The examples are
ized clusters and the variety of clusters that are formed. All the
an initial transient (about 2000 iterates) phase synchronized
4. The solid circles show that the two corresponding nodes are
are phase synchronized. In each case the node numbers are
bered consecutively. (a) shows an ideal self-organized phase
5. (b) An ideal driven phase synchronization for a scale-free

le-free network for g�x� � f�x� and � � 0:61. (d) A dominant
:87. (e) A dominant self-organized behavior for 1D lattice with
driven behavior with several isolated nodes for 1D lattice with
-free networks were generated starting with N0 � 1 nodes and
of the lattice with the probability of connecting to a node being
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FIG. 2. The fraction of intracluster and intercluster couplings,
finter (solid line) and fintra (dashed line) are shown as a function
of the coupling strength �. (a) and (b) are for the scale-free
network for g�x� � x and g�x� � f�x�, respectively. (c) and (d)
are for the 1D network with nearest neighbor couplings for
g�x� � x and g�x� � f�x�, respectively. The figures are ob-
tained by averaging over 20 realizations of a network and
50 random initial conditions for each realization.
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type), while the remaining three clusters have dominant
intercluster couplings (driven type). Also there are several
isolated nodes. Figure 1(d) shows clusters where driven
behavior dominates. Figure 1(e) shows clusters where self-
organized behavior dominates. Figure 1(f) shows two
clusters of the ideal driven type with several isolated
nodes. Figures 1(c)–1(f) have isolated nodes which do
not belong to any cluster. These nodes evolve indepen-
dently; however, some of them can get attached to some
clusters intermittently.

To get a quantitative picture of the two ways of cluster
formation we define two quantities finter and fintra as

fintra �
Nintra

Nc
; (2a)

finter �
Ninter

Nc
; (2b)

where Nintra is the number of intracluster couplings and
Ninter is the number of intercluster couplings. Couplings
between isolated nodes are not counted in Ninter.

Figures 2(a) and 2(b) show both fintra and finter as a
function of � for g�x� � x and g�x� � f�x�, respectively,
for the scale-free networks. From Fig. 2(a) [g�x� � x], we
see that after an initial turbulent phase we get clusters
with large values of fintra, i.e., self-organized clusters, for
� * 0:12. fintra becomes almost 1 for �� 0:18 and then
starts decreasing. As � increases further finter starts in-
creasing and there is a crossover and reorganization of
nodes to driven clusters, so that for very large �, finter is
close to 1. The ideal driven cluster shows two driven
clusters which are antiphase synchronized with each
other. On the other hand, for g�x� � f�x�, Fig. 2(b) shows
that finter, i.e., driven behavior, dominates. Figures 2(c)
and 2(d) show similar graphs for network with one di-
mensional nearest neighbor couplings. The behavior is
similar to that of scale-free networks except that for
g�x� � f�x� and for large � there is almost no synchron-
ization or cluster formation [Fig. 2(d)].

It is interesting to note that the two different ways of
cluster formation are observed even when the variables in
the clusters are evolving chaotically. For 
 � 4, we find
that when three or more clusters are formed the largest
Lyapunov exponent is positive.When two clusters (with or
without some isolated nodes) are formed the largest
Lyapunov exponent can be both positive or negative de-
pending on the parameter values and the type of coupling.
If the largest Lyapunov exponent is negative, the variables
show periodic behavior with even period [8]. For 
< 4,
we find different periods including odd ones and also two,
three, or more stable clusters depending upon the pa-
rameters and initial conditions.

Geometrically, the organization of the network into
couplings of both self-organized and driven types is
easy to understand for the networks with tree structure.
A tree can always be broken into two or more disjoint
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clusters with only intracluster couplings by breaking one
or more connections. Clearly, this splitting is not unique.
A tree can also be divided into two clusters by putting
connected nodes into different clusters. This division is
unique and leads to two clusters with only intercluster
couplings. For other types of networks splitting into
clusters with ideal intracluster or intercluster couplings
may not always be possible. However, clusters with domi-
nant couplings of either intracluster or intercluster type
are still possible for Nc � N. For larger values of Nc,
typically of the order of N2, a clear identification of
only one type of behavior becomes difficult and the
clusters are mostly of the mixed type. Note that geomet-
rically it is always possible to get one big cluster spanning
almost all the nodes of the self-organized type.

We now comment on the choice of T used to determine
the phase synchronization. Clearly, T should be large
enough to include several maxima and minima. On the
other hand it should be small enough to include the
behavior of some isolated nodes that get attached to
some clusters intermittently with a time scale of �s. We
find that �s is about a few thousand iterates. Hence, we
chose T � 100.

We have also studied networks with large N (largest N
was 10 000). We can clearly identify both self-organized
and driven behaviors in such large networks also.
014101-3
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To understand the dynamical origin of the self-
organized and driven phase synchronization let us first
consider a network of two variables, x1 and x2, coupled to
each other. Synchronization between these two variables
will be decided by the difference variable xs� � x1 � x2.
From Eq. (1) the dynamics of xs� is given by

xs�t�1 � �1� ���f�x1t � � f�x2t �� �
�
2
�g�x1t � � g�x2t ��: (3)

Reference [5] discusses synchronization properties of this
network of two variables for g�x� � f�x�. Next consider a
network of three variables with both x1 and x2 coupled to
x3 and no coupling between x1 and x2. Now the dynamics
of the difference xd� � x1 � x2 is given by

xd�t�1 � �1� ���f�x1t � � f�x2t ��: (4)

It can be shown that there is a critical value of � above
which the variables x1 and x2 will synchronize, i.e., xd�

will tend to zero. The detailed dynamics of the above two
simple networks and their synchronization behavior will
be discussed elsewhere [8].

Comparison of Eqs. (3) and (4) clearly shows the differ-
ent dynamical origins of the self-organized and driven
mechanisms. The intracluster coupling term which is
responsible for the self-organized behavior adds a decay
term to the dynamics of xs� [Eq. (3)]. On the other hand,
the intercluster coupling terms, which are responsible for
the driven behavior, cancel out and do not add any term to
the dynamics of xd� [Eq. (4)]. We feel that for larger
networks also similar mechanisms as in Eqs. (3) and (4)
are responsible for the cluster formation of the self-
organized and driven types.

There are several examples of self-organized and
driven behavior in naturally occurring systems. Self-
organized behavior is common and is easily observed.
Examples are social, ethnic, and religious groups, politi-
cal groups, cartel of industries and countries, herds of
animals and flocks of birds, different dynamical transi-
tions such as self-organized criticality, etc. The driven
behavior is probably not so common [10]. An interesting
example is the behavior of fans during a match between
traditional rivals. Before the match the fans may act as
individuals (turbulent behavior). During the match, when
the match reaches a feverish pitch, i.e., the strength of the
interaction increases, the fans are likely to form two
driven phase synchronized groups. The response of each
group depends on that of the other and is normally anti-
phase synchronized with the other. Another example is
the formation of opposite ethnic groups as in Bosnia.

In this Letter we have presented results for the case
where the local dynamics is governed by a logistic map
and couplings g�x� � x and f�x� for the scale-free net-
works and 1D lattice with nearest neighbor couplings. We
have also studied several other maps (circle map, tent
map, etc.), other types of couplings, and different net-
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works (2D lattice with nearest neighbor couplings, small
world networks, Caley tree, random networks, bipartite
networks). We find similar behavior and are able to iden-
tify self-organized and driven behavior.

To conclude we have investigated the mechanism of
cluster formation in coupled maps on different networks.
We are able to identify two distinct ways of cluster
formation, namely, self-organized and driven phase syn-
chronization. Self-organized synchronization is charac-
terized by dominant intracluster couplings while driven
behavior is characterized by intercluster couplings. The
two ways of cluster formation are clearly seen for net-
works with a small number of couplings (Nc � N) but are
difficult to identify as the number of couplings increases
and becomes of the order of N2. Dynamically, the ex-
amples of small networks show that the self-organized
behavior occurs because of the intracluster couplings
introducing a decay term in the difference variables while
the driven behavior occurs because of the intercluster
couplings canceling out.
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