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Nuclear dynamics on coupled potential surfaces can lead to bound states embedded in the continuum.
For one type of conical intersection situation, an explicit proof is presented that such states exist. Non-
Born-Oppenheimer effects are responsible for the binding of these states. Once the Born-Oppenheimer
approximation is introduced, these states at best become resonances which decay via potential
tunneling. The tunneling is completely suppressed by the coupling between the electronic states. A

numerical example is given.
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In general, scattering cross sections exhibit local ex-
trema which are attributed to compound states of the
target plus projectile system. These states, often called
resonances, are nonstationary states of finite lifetime and
can be described as discrete states embedded in and
interacting with the continuum [1]. Two questions imme-
diately arise. Can this interaction with the continuum be
totally suppressed and if yes, why? The absence of inter-
action leads to bound states with energies embedded in
the continuous spectrum. Such states were first discussed
by von Neumann and Wigner in 1929 [2]. They proposed
that certain spatially oscillating potentials, with ampli-
tude decreasing with distance, could support bound states
at positive energies. At specific momenta destructive in-
terference occurs, which causes the wave function to
vanish at large distances producing thereby a normal-
izable state.

The results of von Neumann and Wigner have stimu-
lated a considerable amount of theoretical and also ex-
perimental work of which we cite only a few. One
example is provided by Capasso et al. [3] who report on
an electronic bound state with no classical turning points
which they have observed in a superlattice consisting of
ultrathin semiconductor layers. Another example is given
by Weber and Pursey [4] who discuss truncated von
Neumann—Wigner potentials in connection with the
reported observations of narrow positron-electron peaks
in heavy ion collisions [5] which could be fingerprints of
the existence of bound states in the continuum.

The von Neumann—Wigner potential is a long-range
potential and its truncation turns the bound state into a
resonance state [4]. In the present work we demonstrate
that there exists another class of physical problems with
bound states in the continuum where no use is made of
the long-range property of the underlying potentials.
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Moreover, the physical problems are realized in real
systems.

In molecules the fundamental Born-Oppenheimer ap-
proximation [6], which separates the electronic and the
nuclear motions, is often valid. There are, however, nu-
merous examples where this approximation becomes
inadequate or even breaks down. In these cases two (or
more) electronic states interact with each other through
the nuclear motion. The generic prototype situation where
the Born-Oppenheimer approximation breaks down is
provided by the presence of conical intersections of elec-
tronic energies in the space of nuclear coordinates [7].
These energies are the potential surfaces for the nuclear
motion. Conical intersections [8] of potential surfaces are
in fact ubiquitous [7,9-11]. They have been abundantly
found in triatomic molecules as well as in large polya-
tomic ones. In this work we demonstrate that conical
intersection situations provide a mechanism for bound
states embedded in the continuum.

We consider the nuclear motion on two coupled poten-
tial surfaces. A diabatic representation [12] of the elec-
tronic states is invoked which, although not strictly
existent [13], provides a widely used framework for
understanding the dynamics in conical intersection situ-
ations of real molecules. The proof of the existence of
bound states in the continuum is presented below in the
diabatic representation for simplicity of representation; it
can also be given invoking the adiabatic representation.
The Hamiltonian in matrix notation reads

— Vb Vbc
H=Tyl+ (Vbc v, > D

where Ty is the kinetic energy operator of the nuclei and 1
denotes a two dimensional unit matrix. V,, and V. are the
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diabatic potential surfaces of the two electronic states
which are coupled via the potential coupling V..
In general, all these potentials are functions of the par-
ticipating nuclear coordinates. Symmetry, however, plays
an essential role in shaping these potentials.

A widespread type of conical intersection arises from
two nondegenerate electronic states @, and ®, of differ-
ent spatial symmetries [7]. The case of states of the same
symmetry is more involved and is not discussed here. Let
us denote the two symmetries by B and C, their product
by D, D = B X C, and the totally symmetric symmetry
representation of the underlying Abelian point group by
A. The nuclear coordinates (modes) relevant for the dy-
namics can be easily identified by symmetry. The two
electronic states interact through those nontotally sym-
metric nuclear modes which transform as D, while the
totally symmetric modes regulate the separation in en-
ergy of the interacting states [7]. Let us denote the former
modes by y, the latter by x, and all other types by z and
consider for simplicity of the discussion one mode of each
type. The full Hamiltonian H and the kinetic energy
operator Ty are totally symmetric. Consequently V, =
(®,|H — Ty|®,) and similarly V, in (1) are totally sym-
metric functions of the nuclear coordinates, i.e., V, =
V,(x,¥%, z%) and V.= V.(x,y% z%). These can be ex-
panded in a Taylor series in the vicinity of a relevant
reference point, e.g., the ground state geometry: V, =
V,(0) + kpx + OQ2) and V, = V,.(0) + k.x + O(2), where
the ks are the gradients of the potentials with respect to x
and O(2) refers to all second order distortions. In contrast,
Vie = (®,|H — Ty|P,) obviously transforms as D and is
an odd function in y. We may write V,,, = yA(x, 72, y?) =
yA(0) + O(2). We see that the totally symmetric modes x
enter the diagonal in (1) linearly while the nontotally
symmetric modes y influence linearly the off diago-
nal. For further discussion of symmetry, see, for in-
stance, [14].

At a conical intersection the adiabatic potential surfa-
ces intersect linearly in at least two nuclear coordinates.
Clearly these coordinates comprise at least one coupling
mode y and one totally symmetric mode x. The modes of
type z are irrelevant in the vicinity of the conical inter-
sections. The adiabatic potential surfaces are obtained as
the eigenvalues of the potential matrix in (1). For these
eigenvalues to coincide, the conditions V, =V, and
Vi = 0 must be fulfilled. The above symmetry consid-
erations imply that a conical intersection exists at y = 0
and x = [V,(0) — V.(0)]/[k. — k] + ... if the gradients
differ from each other and the Taylor series of the diabatic
potentials still hold at this geometry. Nowadays, ab initio
methods are available to detect conical intersections [10]
and once such an intersection is found we can choose the
geometry of this intersection as our reference point for
the above symmetry considerations.

Having completed the discussion of symmetry in the
basic equation (1), we now return to our main topic of
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bound states in the continuum and consider the electronic
state @, to be bound in all nuclear modes (up to some
energy of interest) while the other electronic state ®,. is
dissociative in one direction and bound in the others. For
simplicity, one coupling mode y and one totally symmet-
ric mode x are considered and the dissociation is along
the mode x. The analysis presented below can be straight-
forwardly transferred to other situations. Conical inter-
sections involving dissociative and bound electronic
states are widespread and play an important role in,
e.g., photodissociation processes; see [9-11,15,16] and
references therein.

To proceed we introduce the Hamiltonians H, = Ty +
V, and H. = Ty + V. which describe the nuclear motion
in the uncoupled electronic states. Of course we are in-
terested in the Schrodinger equation of the total
Hamiltonian (1):

Hy Ve \( ¥ \_ - ¥»

<Vbc Hc )( l//c ) E< 'wbc >’ (2)
where ¢, and ¢, are the components of the nuclear wave
function on the two diabatic surfaces. The states of H.,
provide the continuum for the bound vibrational states of
H,;, which become, in general, resonances through the
coupling V.. At large values of x the modes x and y
become separable in H. andat x — co wehave H, = T, +
[T, + V.(y)] which will be denoted H (o) in the follow-
ing. T, and T\, are the kinetic energy operators of the x and
y motions and V,.(y) collects all the constants and
y-dependent potential contributions. Let us denote the
eigenenergies of T, + V.(y) by E,, and its eigenstates
by Imy>; m=0,1, ....The energies of the various chan-
nels to which the system can dissociate are E,, and the
threshold of the dissociation is obviously given by the
lowest of these values, Eov, i.e., by the ground state energy
of H.().

Upon expanding (2) into two equations, solving for ¢,
in one equation in terms of ¢, while adding the infini-
tesimal /0™ to the resolvent, and substituting the resulting
equation for ¢, into the other equation, we obtain

Hpip, = Edsy, (3)

where Hp, is the effective, energy-dependent Hamiltonian
describing the states of H in the bound subspace of H:

Hg=H,+ V,.(E—H.+i0")"'V,. “)

The solutions of (3) in the complex energy plane provide
the bound and resonance states of H.

Since Hp lives in the bound space of H,, i, is a square
integrable function and we may normalize it. In general,
the complex resonance energy E is given as (i, |Hg|i):

E = (| Hplthy) + (@p| Ve (E — Ho + i0%) 7V i),
)

The first term on the right-hand side is a real number, and
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the second term can take on complex values. Since the
resolvent (E — H,. + i0")~! possesses a cut at energies at
and above the continuous spectrum of H., one might be
tempted to assume that all levels at energies above the
dissociation threshold of H, are resonances. This is, how-
ever, incorrect as we show below.

To evaluate (3), we may represent Hp in (4) in the
complete discrete product basis (Hy lives in the bound
subspace of H,) |n,)|m,), where the |m,) have been in-
troduced in the text below (2) and the |n,) are ordinary
harmonic oscillator states. Because of symmetry, Hyp does
not couple even and odd values of m, and we may inves-
tigate each set separately. For brevity we discuss only
symmetric (gerade) states of y. We proceed by inserting
into (4) the completeness relation of the set |k,)|m,),
where |k,) are the free states of the kinetic energy opera-
tor T,. The quantity |k,)|m,) is an eigenstate of H(c0).
The energies of the latter determine the cuts of Hp and
hence the appearance of imaginary contributions to the
resonances. We have argued above that H, is a totally
symmetric operator and the coupling potential V. an odd
function of the coupling mode y. Consequently, the ger-
ade states of Hy couple to the continuum via ungerade
states of H, as can be seen in (4).

Although the continuous spectrum of H, begins at the
breakup threshold E, , the effective threshold for the
gerade states of the total Hamiltonian is determined by
the ungerade channel |1y>,]; ie., it is at E, . There are no
gerade resonances of H at energies below E; . The gerade
states of Hy at these energies are true bound states em-
bedded in the continuum. The latter begins at E, . This
completes our rigorous proof that conical intersections of
the type discussed here give rise to bound states in the
continuum.

In the following we briefly discuss a numerical ex-
ample illuminating the above findings. To make the dis-
cussion as transparent as possible a simple structure for
the diabatic potentials is chosen:

1, 241 .2
Vy =30.x° +30,y",

6
V., = ce BO+8) 4 %wyy2 + A, (©)

th = /\y

The bound Hamiltonian H,, is a separable sum of har-
monic oscillators and the unbound part of V, is an ex-
ponential function along the mode x. The coupling V,,. is
linear in the coupling mode y as in previous models [7].
Dimensionless coordinates and atomic units are used. We
have chosen values of the potential parameters to be w, =
0.015, wy, = 0.009, € = 0.04, B =0.5, 6 =05, A =0,
and A = 0.01. A cut of the potentials along x at y = 0 is
shown in Fig. 1. The two potentials V;, and V. intersect at
one point which turns out to be the conical intersection
point of the adiabatic potential surfaces.

We have computed the eigenstates of the Hamiltonian
(1) describing the nuclear dynamics on the coupled elec-
tronic states using the model potentials (6). For this
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FIG. 1. (a) A cut of the diabatic potentials V;, and V, along x
at y = 0. Shown also are the exact energy of the bound state in
the continuum and its wave function components |1, |?> (dashed
curve) and [, |? (dotted curve); the latter has been scaled by a
factor of 10 relative to the former. Both components exponen-
tially decay at large x. The energy window for bound states in
the continuum is indicated: it is between the breakup channels
Ey and E; . (b) A cut of the lower adiabatic potential along x at
y = 0. The resonance state shown possesses a short lifetime
due to tunneling; the resonance wave function oscillates at
large x. The complex resonance energy is indicated; the hori-
zontal thin dotted line indicates the resonance position and the
horizontal thin solid lines indicate the width. Tunneling is
completely suppressed by non-Born-Oppenheimer effects as
seen in (a). The values of the potential parameters used are
given in the text below Eq. (6). All of the wave functions are
shown along x at y = 1.2 since ¢, has a node at y = 0. Except
for ¢, the wave functions shown are very similar in form to
those for y = 0.

purpose the method of complex rotation [17] has been
employed in which the Hamiltonian is analytically con-
tinued and the spectrum rotates into the complex energy
plane. Bound state energies of the original Hamiltonian
stay on the real energy axis while resonance states appear
as isolated poles at complex energies E, — il',/2. The
width I, of the resonance is inversely proportional to its
lifetime. The resonance wave function of the complex
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rotated Hamiltonian is an L? function in coordinate space
underlying the conceptual and technical advantages of
the approach. We did not a priori assume that the state of
interest is a bound state. We rather computed it as a
resonance and made sure that its width approaches zero
as the number of basis functions used is systematically
increased. For the parameters used in Fig. 1 we find a level
at £, = 0.01030 with an imaginary part which is van-
ishingly small within numerical accuracy. This level is
below E; and above E, as indicated in the figure. The
wave function of this bound state embedded in the con-
tinuum is depicted in the figure as well. Although V. is
unbound, both components ¢, and ¢, of the total wave
function [see (2)] are well localized in space as expected
for a true bound state. We point out that resonances in
potentials like those shown in Fig. 1 have been studied in
real molecules and all previous examples have been found
to have finite lifetime [18].

The coupling of electronic states leads to violations of
the Born-Oppenheimer approximation. The question im-
mediately arises whether the bound states found above are
fingerprints of such violations or whether these states also
exist within the Born-Oppenheimer approximation. In
this approximation the nuclear dynamics proceeds on
the uncoupled adiabatic potential surfaces using the ki-
netic energy operator Tn. The adiabatic surfaces are
obtained as eigenvalues of the potential matrix in (1). A
cut of the lower adiabatic potential along x at y = 0 is
shown in Fig. 1 for the potentials in (6). We have com-
puted the resonance state in the adiabatic potential and
obtained E®Y = 0.0092 — i0.0001. Obviously the width
of this state is substantial although the real part of the
energy resembles the exact solution of the Schrodinger
equation (2). This width is a result of tunneling through
the potential barrier. In the exact calculations, this tun-
neling is completely suppressed by the coupling between
the electronic states.

Summarizing, we have demonstrated that the nuclear
dynamics on coupled potential surfaces possess attractive
features which can lead to bound states embedded in the
continuum. In the conical intersection situation studied
here a rigorous proof is given that an energy window in
the continuum exists whose gerade states are bound. The
binding is absent in the widely used Born-Oppenheimer
approximation where the dynamics proceeds on a single
adiabatic surface at a time and the standard kinetic energy
is used. It would be interesting to study the impact of
corrections to this approximation by introducing a geo-
metic phase [19]. (Note that the geometric phase effect is
included in our above calculations of bound states em-
bedded in the continuum.) Bound states in the continuum
cannot be observed in scattering experiments but can be
observed by spectroscopy and half-collision experiments.
If the system is perturbed and its symmetry lowered, the
bound states in the continuum will turn into resonances
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which, most probably, are very long-lived. The appear-
ance of sharp peaks in scattering cross sections in conical
intersection situations of the type discussed here is an
indication of these resonances and hence of the mecha-
nism discussed here. It could be the case that other types
of interactions betweeen electronic states also lead to
bound states, but we are not presently aware of such cases.
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