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Two-loop renormalization group equations in the standard model are recalculated. A new coefficient
is found in the � function of the quartic coupling and a class of gauge invariants is found to be absent in
the � functions of hadronic Yukawa couplings. The two-loop � function of the Higgs mass parameter is
presented in complete form.
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mass parameter in complete form, which provides a par-
tial but useful check on the calculation of the quartic
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Analysis based upon renormalization group equations
(RGEs) plays an important role in the study of physics of
the standard model (SM) and beyond. Detailed analysis of
RGEs confirmed the behavior of asymptotic freedom in
QCD, and thus helped to establish a non-Abelian gauge
theory for the strong interaction [1]. The runnings of
coupling constants and mass parameters are crucial in
global analysis of high precision electroweak experi-
ments [2]. On the other hand, RGEs analysis extrapolated
to extremely high energy provides a possible test for
physics beyond the SM. For example, gauge couplings
do not unify within the SM. This gives extra evidence
against simple grand unification theories such as SU�5�
without supersymmetry, in addition to the nonobservation
of proton decay. On the other hand, gauge couplings seem
to unify at a scale �2� 1016 GeV in the minimal super-
symmetric standard model, which can be interpreted as
an indirect evidence for supersymmetry as well as uni-
fication theories [3–5]. Comprehensive analysis can be
found in [6].

Computations of RGEs in gauge theories have been
performed for various models to different orders of per-
turbation. Persistent efforts yielded recently a four-loop
result of the � function of the strong coupling constant
[7]. Two-loop RGEs of dimensionless couplings in a gen-
eral gauge theory as well as the specific case of the SM
had been calculated long ago in a series of classic papers
by Machacek and Vaughn [8–10]. By introducing a non-
propagating gauge-singlet ‘‘dummy’’ scalar field, two-
loop RGEs of dimensional couplings can be readily
inferred from dimensionless results [11,12]. These were
used to derive the RGEs of supersymmetric theories a
decade later [11].

In this paper, we recalculate the two-loop RGEs in the
SM, in a combination of using the general results of [8–
10] and direct calculations from Feynman diagrams. A
new coefficient is found in the � function of the quartic
coupling, and a class of gauge invariants are found to be
absent in � functions of hadronic Yukawa couplings. We
will also present the two-loop � function of the Higgs
0031-9007=03=90(1)=011601(4)$20.00 
coupling. Whenever discrepancy with the literature ap-
pears, we carefully inspect relevant Feynman diagrams
to ensure consistency.

To fix notations, we define Yukawa couplings and the
Higgs potential in the SM to be

�Lint � f �eeFL��l� �ddFD��q� �uuH��cq� H:c:g

�m2����
�
2
�����2; (1)

where three families of fermions are grouped together so
FL;FD;H are 3� 3 complex matrices, and �c 
 i�2��.
For each coupling constant x in Eq. (1), we define a
corresponding � function,
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where ��1�
x ; �

�2�
x denote the one-loop and two-loop con-

tributions, respectively. We use dimensional regulariza-
tion and the modified minimal subtraction scheme �MS�
for renormalization. The expressions of the ��1�

x are quite
standard which can be easily reproduced. The evaluation
of ��2�

x will be the object of this article.
Following the conventions of [8–10], we define the

following combinations of Yukawa matrices for later
convenience:
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The complex Higgs doublet has to be decomposed into
real fields. Further complication arises since [8–10]
assumed implicitly that the fermion fields are real, while
usual Weyl fermions are complex. Caution should be
taken when Yukawa couplings and gauge representation
matrices of fermions are dealt with [12]. All issues taken
into account, � functions in the SM can be obtained in a
straightforward manner. The lengthy algebra is greatly
simplified with the aid of the symbolic software FORM

[13]. The � functions of the gauge coupling constants are
readily reproduced and conform to those in the litera-
ture[8]. First, we present the � functions of the Yukawa
011601-2
couplings. To one loop,
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to two loops,
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FIG. 1. Two-loop diagrams which affect hadronic Yukawa
couplings. (a) and (b) [(c) and (d)] cancel with each other,
thus resulting in a null contribution to ��2�

H (��2�
FD

).
where SU�3� � SU�2� � U�1� gauge coupling constants
g3, g2, and g1 are normalized based upon SU�5�, so the
standard electroweak gauge coupling constants g and g0

are related to these by g2 � g22 and g02 � 3=5g21. The
matrices FL, FD, and H do not have to be invertible.
Their inverses should only be understood symbolically
and need not be introduced in principle. Properly inter-
preted, the � functions are equal to the Yukawa matrices
themselves multiplied by the right-hand side of the cor-
responding equations. For ��2�

H in [9], there was the term
�2�HF�

DFD, which is absent in Eq. (6). A close inspec-
tion indicates that this term arises only from the Feyn-
man diagrams shown in Figs. 1(a) and 1(b). However,
these two diagrams cancel with each other, which can
easily be verified by an elementary calculation. Similarly
in Eq. (7) for ��2�

FD
, the term �2�FDH�H is also absent,

in contrast with [9]. The corresponding Feynman dia-
grams are shown in Figs. 1(c) and 1(d), and again they
cancel with each other. The leptonic results are included
here for completeness.
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The � function of the quartic coupling can be obtained in a similar manner. The calculation is greatly simplified by
the fact that there is only one independent quartic coupling in the SM. Calculation for models beyond the SM with
numerous quartic couplings would be more involved, due to proliferation of combinatorics. The one-loop contribution to
the � function of � is
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to two loops,
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Note in Eq. (10), the coefficient of the term
�Tr�H�HF�

DFD� is �42, instead of 6 as given by [10].
We note that terms proportional to �H�S� and
�Tr�H�HF�

DFD� arise partly from scalar boson propa-
gators. The relevant Feynman diagrams are shown in
Figs. 2(a) and 2(b). There are also related two-loop proper
scalar quartic vertex diagrams, which are generically
shown in Figs. 2(c) and 2(d). It turns out that Fig. 2(c)
does not contribute to the � function, so only Figs. 2(a),
2(b), and 2(d) need to be evaluated. In addition to calcu-
lating Feynman diagrams directly, we compare the co-
efficient of �H�S� and that of �Tr�H�HF�

DFD�. By
including all specific diagrams and carefully collecting
all coefficients, we find that the ratio of the term propor-
tional to the latter over the term proportional to the
former is 42, instead of �6. This substantiates Eq. (10).
On the other hand, coefficients of terms �g21g

2
2 and �g41 in

Eq. (10) conform to those in [14], and in fact Eq. (10)
(a) (b)

(c) (d)

FIG. 2. (a) and (b): Part of hadronic Yukawa coupling con-
tribution to Higgs boson propagators, which in turn affect ��;
(c) and (d): relevant proper scalar quartic vertex diagrams.
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agrees with the corresponding result in [14] if only the
top-quark Yukawa coupling is retained.

The � function of m2 can be inferred from the results
in [10] by introducing a nonpropagating dummy real
scalar field �d with no gauge interactions, and carefully
computing the combinatorics associated with the sym-
metry factor [11,12]. Specifically, the mass term can be
rewritten as

�L � m2��� � 1
4!�ddij�d�d�i�j;

by decomposing the complex doublet � into four real
scalars �i; �i � 1; 4�. If �d is taken to have no other
interactions, then the � functions of m2 have the same
form as that of the newly introduced quartic coupling
�ddij. To one loop, the � function is
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and to two loops,
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Note the terms ngg41 and ngg42 in Eq. (12), which originate
from generic Feynman diagrams shown in Fig. 3. These
diagrams are proportional to the fermion Dynkin indices
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FIG. 3. Part of SU�2� � U�1� contributions to the Higgs bo-
son propagators.
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in the pure fermionic loops, while Dynkin indices are
always positive. So all fermions in the loop contribute
additively, thus resulting in the ng factor in the expression.
Equation (12) is consistent with the newly revised result
of [14].

To a good approximation, we can express the SM
effective potential of the Higgs field,

Veff��� � �mm2�t�Z2�t����� 1
2
����t�Z4�t������2; (13)

in terms of the running coupling constants and the run-
ning Higgs mass,

d lnZ�t�
dt

� �!�� �xx�t�
;
d �mm2�t�
dt

� �m2� �xx�t�; �mm2�t�
;

d �xx�t�
dt

� �x� �xx�t�
; (14)

where the generic symbol x represents all dimensionless
couplings, including the gauge couplings, the Yukawa
couplings, and the quartic scalar coupling; !� is the
anomalous dimension of the Higgs field, to be found in
[8,12]; t � log�=M, where M is an arbitrary mass scale,
at which the initial values of the coupling constants and
the mass are defined. The vacuum expectation value of the
Higgs field is determined by minimization of Veff . The
physical mass of the Higgs boson is simply the second
derivative of Veff evaluated at the minimum [15].

In summary, we have recalculated the RGEs in the SM.
A new coefficient is found in the � function of the quartic
coupling and a class of gauge invariants are found to be
absent in � functions of hadronic Yukawa couplings.
The � function of the Higgs mass parameter is also
presented in complete form. The changes in Yukawa
couplings affect the running of the Cabibbo-Kobayashi-
Maskawa matrix and the quark masses. The changes
in m2 and � will change the Higgs potential, which in
turn affect the triviality and vacuum stability bound on
011601-4
the Higgs mass. Because of the dominance of one-
loop results and relative bigger contributions from gauge
couplings over those from the quartic and Yukawa cou-
plings (with the exception of the top quark), numerical
changes are not expected to be significant. For � and
Yukawa couplings related to the b quark, the changes
are magnified by the factor m2

t =M
2
W , but again suppressed

by the factor m2
b=M

2
W . All these shifts will be included in

a future comprehensive analysis [12]. On the other hand,
for a heavy fourth family of fermions, the changes would
be sizable.

We are grateful to D. R.T. Jones, S. Martin, and
M. Vaughn who carefully read the manuscript and pro-
vided independent checks of our results. We thank
J. Vermaseren for help on FORM. The work was supported
by a Fund for Trans-Century Talents, CNSF-90103009,
and CNSF-10047005.

Note added.—Upon completion of this work, we were
informed that part of the results presented here was also
reached in [16].
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