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Decoherence-Induced Continuous Pointer States
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We investigate the reduced dynamics in the Markovian approximation of an infinite quantum spin
system linearly coupled to a phonon field at positive temperature. The achieved diagonalization leads to
a selection of the continuous family of pointer states corresponding to a configuration space of the one-
dimensional Ising model. Such a family provides a mathematical description of an apparatus with
continuous readings.
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servable of the apparatus evolves towards the Abelian
algebra generated by these projections.

where H0 � d��!� � !�k�aF�k�aF�k�dk describes dy-
namics of the reservoir at zero temperature. The reference
Decoherence is a process of continuous measurement-
like interactions between a quantum system and its envi-
ronment which results in limiting the validity of the
superposition principle in the Hilbert space of the system
[1]. It accepts the wave function description of the com-
bined state of the system and its environment but con-
tends that it is practically impossible to distinguish it
from the corresponding statistical mixture. In other
words, the environment destroys the vast majority of the
superpositions quickly, and, in the case of macroscopic
objects, almost instantaneously. It was shown that deco-
herence is a universal short time phenomenon indepen-
dent of the character of the system and the reservoir [2].

In recent years decoherence has been widely discussed
and accepted as a mechanism responsible for the emer-
gence of classicality in quantum open systems [3–5]. A
particular aspect of decoherence is the selection of the
preferred basis of pointer states [6] which occurs when the
reduced density matrix of the system becomes approxi-
mately diagonal in time much shorter than the relaxation
time. In practical situations this results in the disappear-
ance of nondiagonal elements in the reduced density
matrix. Hence, by definition, pointer states do not evolve
at all, while all other states deteriorate in time to classical
probability distributions over the one-dimensional pro-
jections corresponding to these states. However, it should
be pointed out that the algebra generated by these projec-
tions is always of a discrete type, and, as was shown in
[7], the discreteness is unavoidable as long as we consider
quantum systems with a finite number of degrees of free-
dom. Such a situation is clearly unsatisfactory since there
are quantum measurements with continuous outcomes.
In this Letter we demonstrate by a completely solvable
model that ‘‘openness’’ of a macroscopic measuring
device, regarded as a quantum system in the thermody-
namic limit, yields continuous pointer states. By continu-
ous pointer states we understand an uncountable family of
commuting and dynamically invariant projections which
contains no minimal projections, and such that any ob-
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The model is the following (we shall work in the
Heisenberg picture). The apparatus is a semi-infinite lin-
ear array of spin- 1

2 particles, fixed at positions n �
1; 2; . . . . Such a model of the apparatus was considered
also by Bell [8] in connection with the wave packet
reduction. Since we neglect the position variables of the
spin particles the algebra M of (bounded) observables is
given by the �-weak closure of ���1

1 M2�2�, where � is a
(faithful) Gelfand-Naimark-Segal representation with
respect to a tracial state tr on the Glimm algebra
�1
1 M2�2, and M2�2 is the algebra generated by Pauli

matrices. Since there is no free evolution of the apparatus,
HA � 0. The reservoir is chosen to consist of noninter-
acting phonons of an infinitely extended one-dimensional
harmonic crystal at the inverse temperature � � 1

kT . The
Hilbert space H representing pure states of a single
phonon is (in the momentum representation) H �
L2�R; dk�. A phonon energy operator is given by the
dispersion relation !�k� � jkj ( �h � 1; c � 1�. It follows
that the Hilbert space of the reservoir is F �F , where F
is the symmetric Fock space over H . A phonon field
��f� � 1��

2
p 	a
�f� � a�f��, where a
�f� and a�f� are given

by the Araki-Woods representation [9]:

a
�f� � a
F��1� ��1=2f� � I � I � aF��
1=2 �ff�; (1)

a�f� � aF��1� ��1=2f� � I � I � a
F��
1=2 �ff�: (2)

Here a
F�aF� denotes, respectively, creation (annihilation)
operators in the Fock space, and � is the thermal equi-
librium distribution related to the phonons energy accord-
ing to the Planck law

��k� �
1

e�!�k� 
 1
: (3)

Since the phonons are noninteracting, their dynamics is
completely determined by the energy operator

HE � H0 � I 
 I �H0; (4)R
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state of the reservoir is taken to be a gauge-invariant
quasifree thermal state given by

!E	a
�f�a�g�� �
Z

��k� �gg�k�f�k�dk: (5)

Clearly, !E is invariant with respect to the free dynamics
of the environment.

The Hamiltonian H of the joint system consists of the
reservoir term HE and an interacting part HI. We assume
that the coupling is linear (as in the spin-boson model),
i.e., HI � �Q ���g�, where

Q � �

 X1
n�1

1

2n
�3
n

!
; (6)

�3
n is the third Pauli matrix in the nth site, and � > 0 is a

coupling constant. In real interactions one should also
include bilinear terms in the coupling. However, even
this simplified model turns out to yield an efficient loss
of coherence of the vast majority of the apparatus observ-
ables. The factor 1

2n in Eq. (6) reflects the property that
interaction between spin particles and the reservoir de-
creases as n ! 1. Its form was chosen to simplify further
calculations. The test function g�k� � jkj1=2��k�, where
��k� is an even and real valued function such that (i) � is
differentiable with bounded derivative, (ii) for large jkj,
j��k�j � �C=k2� �, C > 0,  > 0, and ��0� � 1. The be-
havior of the test function g at the origin and the asymp-
totic bound (ii) are taken to ensure that H is essentially
self-adjoint. Properties (i) and (ii) will also secure that
the thermal correlation function of the field operator is
integrable (see below). The cutoff function ��k� may be of
a Gaussian, exponential, or algebraic type. Since

HI �
����
2

p Q
Z

dkg�k��a
k � ak�; (7)

the spectral density of the environmental coupling

J�!� �
Z

dkg�k�2"	!
!�k�� (8)

is linear for small values of !. Hence environmental
dissipation modeled by Eq. (7) corresponds to the so-
called Ohmic case [10].

The reduced dynamics of an apparatus observable X is
given by

Tt�X� � �!E	eitH�X � I�e
itH�; (9)

where �!E is a conditional expectation (the dual opera-
tion to the partial trace) with respect to the reference state
!E of the reservoir.We derive an explicit formula for Tt in
the Markovian approximation which proved to be suc-
cessful also in other models [11,12]. Because the thermal
correlation function
010403-2
h�t�g���g�i � !E	e
itHE��g�e
itHE��g��

� !E	��eit!g���g�� (10)

is integrable, we use the so-called singular coupling limit
[13,14] which states that Tt � etL is a quantum Markov
semigroup with the generator L given by a master equa-
tion in the standard (Gorini-Kossakowski-Sudershan-
Lindblad) form

L�X� � ib	X;Q2� � �a�QXQ
 fQ2; Xg�: (11)

Parameters a > 0 and b 2 R are determined byZ 1

0
h�t�g���g�idt �

a
2
� ib: (12)

By direct calculations

h�t�g���g�i �
�������
2�

p
F�f1��t� �

�������
2�

p

2
F�f2��t�

�

�������
2�

p

2
F�f3��t�; (13)

where

f1�k� �
jkj�2�k�

e�jkj 
 1
; (14a)

f2�k� � jkj�2�k�; f3�k� � k�2�k�; (14b)

and F stands for the Fourier transform. Hence, by the
inverse Fourier formula,

a � 2�f1�0� � �f2�0� �
2�
�

; (15)

and

b �

�������
2�

p

2

Z 1

0

�
d
dt

F��2��t�
�
dt � 


Z 1

0
�2�k�dk: (16)

The master Eq. (11) consists of two terms. The first one is
a Hamiltonian term H0

A � bQ2, and the second is a dis-
sipative operator

LD�X� �
2��
�

�
QXQ


1

2
fQ2; Xg

�
: (17)

Because these two parts commute so, by the Trotter
product formula,

Tt�X� � eitH
0
A�etLDX�e
itH0

A : (18)

We now describe effects of dissipation. Because M is a
limit of local algebras M2n�2n � �n

1M2�2, and etLD pre-
serves each local algebra so we may assume that X �
�xij� 2 M2n�2n . Then

LD�X�ij � 

��
�

�j
 i�2

4n
1 xij; (19)

i; j 2 f1; . . . ; 2ng, and so

etLD�X�ij � xij exp
�

*t

�j
 i�2

4n
1

�
; (20)

where * � �k�T. It follows from Eq. (20) that the loss of
coherence is faster for coefficients which are more distant
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to the diagonal, and it increases with reservoir tempera-
ture similarly as in the model of a harmonic oscillator
linearly coupled to an infinite bath of harmonic oscilla-
tors [12], and for a spinless quantum particle minimally
coupled to the radiation field [15]. In the thermodynamic
limit n ! 1 dissipation leads to an approximate diago-
nalization of apparatus observables in any finite time
interval. However, the t ! 1 limit leads to the following
result. Suppose A is a von Neumann algebra generated by
���3

n�, n 2 N. Then A is a maximal commutative sub-
algebra in M, and let P:M ! A be a von Neumann
projection onto it. Since 	H0

A; �
3
n� � 0, it follows from

Eqs. (18) and (20) that all observables from A are Tt
invariant.

THEOREM: For any statistical state (density matrix)
� of the spin system and any spin observable X

lim
t!1

hTt�X�i� � hP�X�i�; (21)

where hXi� � tr��X� is the expectation value of X in
state �.

By Eq. (21) all expectation values of ���k
n�, where k �

1; 2, and n 2 N, tend to zero, and so the t ! 1 limit
yields a complete diagonalization of any spin observable.

Finally, we describe the algebra A. Since A is com-
mutative, it is an algebra of functions on some configu-
ration space �. In the sequel we identify an operator
X 2 A with the corresponding function X�,�, , 2 �.
Let P�

n and P

n be spectral projections of �3

n, i.e., �3
n �

P�
n 
 P


n . An infinite product P]
1P

]
2 � � � , where ] stands

for � or 
, defines a state on the subalgebra of continuous
functions in A, and so corresponds to a point in the
configuration space. Thus � � f�i1; i2; . . .�:in � �g or,
in other words, each point of � describes a configuration
of up and down spins located at n � 1; 2; . . . . If .0 is a
probability measure on f
1; 1g which assigns the value
one-half to both " and # spin positions, and if . � �1

1 .0

is the corresponding product probability measure on �,
then for any X 2 A

tr�X� �
Z

X�,�d.�,�; (22)

and so the induced pointer states form an uncountable
family. More precisely, for any s 2 	0; 1� there exists a
projection e 2 A such that tr�e� � s. Thus, since nor-
malization to the unit interval is not essential, the deco-
herence induced pointer states of the presented model
indeed correspond to a pointer with continuous readings.
Let us point out, however, that although the induced
algebra is continuous and commutative our model has
not the complexity needed to describe the position vari-
able of quantum theory. Nevertheless, it suggests the
010403-3
existence of the so-called collective variable and in this
sense it can be seen as the first step to the description of
such continuous variables.

It is worth noting that continuous families of projec-
tions have been selected by a decoherence process also in
other models. For example, using the so-called predict-
ability sieve coherent states of a harmonic oscillator
coupled to a heat bath (quantum Brownian motion)
were shown to be the most stable ones [16]. In a different
framework it was shown that coherent states on the
Lobatchevski space offer minimal entropy production
for the underlying quantum stochastic process [17].
However, coherent states cannot be thought of as continu-
ous pointer states. First, although they offer maximum
predictability and are least affected by the environment,
they do evolve in time, and, second, they are not orthog-
onal. Hence, the algebra they generate is neither immune
to the interaction with the reservoir, nor commutative.
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