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From electron tunnelling experiments Giaever,
Hart, and Megerle! have shown that the dI/aV -V
characteristic for superconducting lead has two
small steps at biases of approximately 2E g and
4Eg, Eg being the full energy gap. It is our pur-
pose to report further structure in the tunnelling
characteristic; specifically, the positions of at
least seven steps have been determined, indicat-
ing corresponding structure in the density-of-
states distribution. Some limited structure has
been predicted recently from solutions of the in-
tegral gap equation by Swihart? and by Culler,
Fried, Huff, and Schrieffer.® While the latter
solution is exact, it rests on the assumption of a
simple Debye phonon spectrum. By invoking an
Einstein distribution, Morel and Anderson* have
commented that harmonic structure should be ex-
pected but we will show that the observed struc-
ture is too extensive to be explained by this ap-
proach alone.

The extensive structure in the tunnelling char-
acteristics was revealed with the aid of equip-
ment previously used by Chynoweth, Logan, and
Thomas.® It displays automatically on an X -Y re-
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FIG. 1. First and second differentiation of the cur-
rent through an Al-Al,O;3-superconducting Pb sandwich
as a function of bias. (Because of the instrumentation
involved, the second derivative trace appears upside
down.)

corder both dI/dV and d?]/dV* as a function of the
dc voltage across a superconducting lead -insulator-
normal metal sandwich. Figure 1 shows such
traces, considerably reduced in size, for the
case of an evaporated Al-AlL,0,-Pb sandwich at
1.6°K. The dI/dV plot exhibits several humps

and up to four of these can be seen on the orig-
inal traces. The positions of these humps are
more easily taken as peaks from the d?I/dV? plot,
which also resolves several more at higher bi-
ases. The peaks can also be seen near 4.2°K,

and similar structure is observed when bulk poly-
crystalline lead is used.

We have plotted in Fig. 2 the locations of suc-
cessive peaks, the scatter being due to measure-
ments both at different times and on a number of
different samples. It can be seen that the peak
positions are given empirically by

En=A +n6, (1)

with the intercept A’=(1.4+0.3) x10™% eV which is
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FIG. 2. Locations of peaks in the tunnelling charac-
teristic for Al-Al,03-Pb sandwiches.
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in satisfactory agreement with the established val-
ue for the half-gap, A, 1.34x107% eV. The slope
gave §=3.7x107% eV and it was found that 6 did
not change with temperature from 1.6°K to above
4.2°K. According to Brockhouse et al.® the bulk

of the transverse acoustic phonon frequencies

fall in the range (4.1+0.8)x107% eV. It therefore
seems reasonable to identify 6 with the transverse
acoustic phonon of lead. The longitudinal acoustic
energies are of order 8 x107% eV but there is ap-
parently no repeated structure in the derivative
plots which can be attributed to these phonons.
This implies that the electron-phonon deforma-
tion coupling constants, a?, are larger for TA
than LA phonons.

The experimental values for the relative mag-
nitudes of the peaks are given in the first row of
Table I. These values are fitted rather well by
$,=S,=1, S,(n=2)=C" =2 where C=0.38 (second
row Table I). This value of C is suggestively
close to the coupling constant A/6, though it must
be emphasized that the observed magnitudes have
not been adjusted to include the effects of changes
in the peak shapes.

A possible dynamical explanation for the struc-
ture is that during tunnelling the carriers emit
phonons. Kane” has pointed out, however, that
in this case the phonons should be characteristic

of the insulator rather than the lead. As the struc-

ture is unchanged with different insulators, we
conclude that the peaks must be associated with
intrinsic properties of the quasi-particles in the
superconductor and must result from a proper
solution of the gap equation.

Giaever, Hart, and Megerle explain the steps
they observed in terms of the energy dependence
of the gap parameter A(E), where the thermody-
namic quasi-particle energy Ep is given in terms
of the normal particle energy €z measured from
the Fermi energy by

B, =[e,+a, 7] (2)

Swihart has discussed the determination of Ap in
an isotropic superconductor from the gap equa-
tion (at T'=0)

A
- 2 R+q
AI‘z o E Vk,k+q' (3)
q k+q

He has used the Frohlich-Bardeen expression for
the kernel,

flw
v = q
B k+q -(ﬁu.)q)2 + (e

4
-€ )2 ’ ( )
k k+q
which describes electron-phonon scattering in the
normal metal.

A more recent exact determination of Ap has
been made by Culler et al. using the Eliashberg®
kernel

n
(Ek ‘g + wq)

%4 = . (5)
ﬁ 2_ 2
kk+q (Ek+q+ wq) Ek

Their results are similar to those of Swihart in
that the main structure in the resulting density
of states consists of two humps at k6 and 2k6p
(6p being the Debye temperature). Their use of
a Debye phonon spectrum might be expected to
smear out the more closely spaced harmonic
structure we observe.

A further approximate solution using the Eliash-
berg kernel and assuming an Einstein phonon spec
trum has been made by Morel and Anderson. They
note that harmonic structure should occur at 26,
36,46, etc., 6 being the phonon energy chosen, but
this does not appear in their solution as it is re-
garded as a small correction in the weak-coupling
limit and is neglected. If the harmonic structure
is retained, we can obtain an upper bound on the
magnitudes of successive peaks using the follow-
ing arguments. The gap equation may be solved
qualitatively by taking advantage of isotropy to

Table I. Observed and predicted peak strengths in the tunnelling characteristics.

Peak number So Sy S, S;3 Sy Ss Sg Sy
Obhserved peak >25 1 0.93 0.37 0.17 0.07 0.02 0.01
strength
Power law dependence 1 0.38 0.14 0,05 0,02 0,008
Calculated one-phonon 1 1 0.38 0.072 0.009 0.0009 0,00007

peak strength
C=E /6=0,38
g
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transform to integration over E =E’. In the
density of states given by Bardeen, Cooper, and
Schrieffer® there is an x "2 singularity for E’
=A(0) =Eg/2. Invoking the usual extremal argu-
ments which apply when integrals contain such
singularities,'® we replace £, , , in the neighbor-
hood of the singularity by Eg/Z. Then for Ep=Eg/2
+6 the kernel goes through a resonance and A(£p)
changes sign from A(0). This approximation actu-
ally overestimates the magnitude of the resonance
and hence the peak strengths.

The effect of this resonance is to flatten Ej, vs
€p as A goes through 0 in the neighborhood of
Eg/2 +6, which means a corresponding peak in the
density of states at this point. We can now re-
peat the argument at Eg/z +26; we find the peak
in the density of states at Eg/2 +6 again switches
the sign of A(Ek). By continuing in this manner,
switching of A(£) accompanied by peaks in the
density of states at Eg/2 +n6 is found to occur.

Now extend the qualitative solution to give an
upper bound on peak intensities. According to (3)
the pulse from each peak n on the peakn+1 is
proportional to the strength of peak n and to A/En'
This yields a series of linear equations for peak
strengths; here C =Eg/29 is a coupling parameter,
and Eg/Z is neglected compared with 6:

S,=1, $,=CS,, S,=CS,/2+++, (6)

which can be solved to give S, , {=C"/nl.

In the third row of Table I we have tabulated
these theoretical values. The theoretical upper
limits are much too small to explain the experi-
mental peak intensities. A result closer to the
experimental values might be obtained from a
more complicated multiphonon Eliashberg kernel
of the form
Ek ‘g +n6 ;
k+q+n9)2-Ek2’ )

Vk+q,k= Z Bn (E
1=1
where B,, are multiphonon coupling constants.

Peak n +1 could then result from the pulse of the

very strong peak at the gap and from the pulses
of peaks 1--.n instead of from the pulse of peak
n alone, as for the one-phonon kernel.

Multiphonon interactions can be obtained from
higher order single phonon terms or from anhar-
monic terms in the lattice Hamiltonian; both of
these are usually small at He temperatures. For
example, phonon spontaneous decay broadening
gives h/7p~ 0.04 6 for transverse phonons in Pb
at helium temperatures.®

It appears that by the use of the Eliashberg ker-
nel, assuming an Einstein phonon distribution,
harmonic structure similar to that observed
should result from an exact solution of the gap
equation. But further understanding of the strong
electron-phonon interactions involved will be nec-
essary to explain the relatively slow decay of the
strengths of the harmonics.

The authors are indebted to E. O. Kane, D. E.
McCumber, and P. A. Wolff for valuable discus-
sion, and to J. M. Klein for technical assistance.
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Yntegrals of this kind frequently occur in Fermi sur-
face problems, where they can also be evaluated by the
method of steepest descents.
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