ERRATUM

DIRECT MEASUREMENT OF μ^- -MESONIC MOL-ECULE FORMATION RATES IN LIQUID HYDRO-GEN. G. Conforto, S. Focardi, C. Rubbia, and E. Zavattini [Phys. Rev. Letters 9, 432 (1962)].

Due to a computational mistake the time scale assumed was 1.29 times the true one. Hence the correct experimental decay times are: Fig. 2(a), $\tau_1 = 119 \pm 8 \text{ nsec}$, Fig. 2(c), $\tau_2 = 264 \pm 12 \text{ nsec}$. These results give, for the molecular speed formation, the values shown in the accompanying revision of Table I.

Table I.	Summary of results.	

Process	D_2 concentration	Amount of neon added	Measured fraction of µ ⁻ transferred to neon	Rate of mesonic- molecule formation	2p - 1s mesonic x ray per trans- fer to neon
(μ <i>p</i>) + <i>p</i> → (<i>p</i> μ <i>p</i>)	≪8 ppm a ∼3 ppm b	28.5 ppm	(5.1 ±1.0) %	$\lambda_{pp} = (3.26 \pm 0.78) \times 10^{6} \text{ sec}^{-1}$	0.85 ± 0.26
	≪8 ppm a ∼3 ppm b	114 ppm	(14 ±2.5) %	$\lambda_{pp} = (2.81 \pm 0.16) \times 10^{6} \text{ sec}^{-1}$	1.07 ± 0.25
$(\mu d) + p \rightarrow (p \mu d)$	4600 ppm	15.75 ppm	(17 ±3)%	$\lambda_{pd} = (6.55 \pm 0.46) \times 10^{6} \text{ sec}^{-1}$	1.03 ± 0.28
	4600 ppm	31.5 ppm	(32 ±5)%	$\lambda_{pd} = (7.18 \pm 0.67) \times 10^6 \text{ sec}^{-1}$	0.83 ± 0.22
	10600 ppm	31.5 ppm	(32 ±5)%	$\lambda_{pd} = (7.75 \pm 0.77) \times 10^6 \text{ sec}^{-1}$	1.01 ± 0.26

^aThis upper limit has been obtained by looking for fusion γ rays from reaction $(p\mu d) \rightarrow (\text{He}^3 + \mu) + \gamma$.

 $^{b}\operatorname{Result}$ of spectroscopic analysis by the manufacturer.