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points, so the energy interval has been made hF.
=0.3 eV, with the result for hv=3. 5 eV and 5.3
eV shown in Fig. 4. The two peaks agree well
with those observed" and confirm the basic as-
signments I'»i - I'» centered at 2.5 eV (more
accurately, A, -A, and A, -A, ) and L,~-L,. The
width of the low energy peak is determined by the
spread in b,, and A, energy levels. The spread
in the I.3~ —I.3 peak is also given qualitatively by
the variation of A, .
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Many important contributions in scattering theory
have been made through the use of approximations,
like the impulse approximation, ' which treat many-
body scattering processes in terms of the indivi-
dual physical two-body scattering amplitudes. Al-
though these methods have provided powerful tools
in the analysis of complicated processes, they
have been useful in general for short-range poten-
tials and for large energies and momentum trans-
fers. In this note we describe an approximation
which, although considerably different from the
impulse approximation, is also formulated in terms
of the physical two-body scattering amplitudes.
The method is apparently valid for all particle
energies and momentum transfers, and requires
at least one of the interactions to be long range.
Consequently it appears useful in treating a wide
variety of elastic and inelastic scattering problems
in atomic and nuclear physics. To illustrate and

substantiate the theoretical arguments, we show
that our methods give rather good agreement with
experiments for two different inelastic nuclear
processes: the neutron transfer reaction in low-
energy ion-ion scattering, and the high-energy
(P, d) pickup process.

Before proceeding to the actual approximation
we derive an expression that formally obtains the
many-body scattering matrix in terms of the two-
body amplitudes. For elastic and inelastic (non-
rearrangement) scattering a suitable expression
can be obtained from a slight modification of ex-
isting formulations, such as that of Gell-Mann and
Goldberger. ' Consider the scattering of one parti-
cle by another via two potentials U and V; the
transition matrix element for this process is given
in Eq. (4.4) of reference 2. The total wave function
it

'+' defined there can be written in terms of aa
factorable wave operator acting on an asymptotic
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plane wave state:

11+ . . U 1+ cp =0 "0
E -K -U - V+ie F. -K-U-V+ie a U V a'

where

0, =1+ 1
V.

V 8 -K-V+i~

Using this result in Eq. (4.4) of reference 2, we
find for the matrix element

wave functions are defined as follows:

(H -E )q =0,
a a a

(H -E )y =0,

(H +U-E )x =0.
a g a

T ~=(x&' ')fv~x "+')+&vb)tU~& ),

where

x '+'=(Q -'Q "0 )(p =0
a V U V a V a'

and we have used the relations that define the two-
body amplitudes, tV ——V~V, tU=U~U, where QU
is defined by Eq. (2) with U replacing V.

In general, &&U' is quite complicated since it
describes the distortion of the asymptotic state

by the potential V, the subsequent distortiona
by U (in a V field), and finally the removal of the
original V distortion. In practical applications
this operator may be simplified in several ways.
The greatest simplification is afforded by the im-
pulse approximation in which the effects of U in
the first term of Eq. (3) are neglected and both
QU' a d QU are set equal to unity However, this
procedure would give a poor approximation in
many problems of interest, and one would do bet-
ter to use distorted-wave methods to approximate
the effects of the various operations in DU . A
third method, that appears most promising in ap-
plications of the type considered in this note, is
the expansion of 0U in powers of V. If U»V in
one region of space and U- 0 or U«V everywhere
else (as is approximately realized with combined
Coulomb and nuclear potentials), such an expan-
sion of 0U is feasible, and yields OU as its lowest
order term in the region where U» V. One may
then approximate QU'-QU and replace g

'+' by
X

'+' in Eq. (3).
Rearrangement collisions may also be treated

by methods similar to those just described. In
the case where scattering occurs in both initial.
and final states via the two potentials U and V,
the matrix element for the rearrangement process
is given by only the first term of Eq. (3),' if the

Ha and H~ are the Hamiltonians for the initial and
final asymptotic states, respectively. The total
wave function g is the solution of the SchrMinger
equation using the total Hamiltonian, H =H~+ U

+V+9"=Hy+U+V+8', where 8' and 8"' are po-
tentials that give binding only in the initial and
final asymptotic states, respectively. The exact
matrix element for the rearrangement scattering
is obtained by again factoring the wave matrix as
in Eq. (l):

(4)

where QV and QU are the same as in the nonre-
arrangement case if K and 8 are replaced by Ba
and &~, and

l( —)

U

1+, . (U't+Wt)1
V E, H-Ut -Vt --Wt -ie V

b 5

In this formalism 8' can be treated in the usual
manner as a scattering potential whose effects
are incorporated into U.

Although the matrix element of Eq. (4) is exact,
it appears quite different from the usual expres-
sions for rearrangement collisions in direct inter-
action theory (as in stripping reactions) where
either 8' or W' appears explicitly and serves as
the "mechanism" for the reaction. We argue here
that the use of the scattering interaction tV instead
of 8' is justified in those cases where the V inter-
action is so strong that it dominates all two-body
processes. This is the case in many applications
of the usual Chem-Wick impulse approximation
where strong short-range (e.g. , pion-producing)
interactions dominate any rearrangement poten-
tials; it is also the case here for long-range pro-
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T fdkX&-(k)7 (k-b)X (k),

=fdk'X (k'+ b,)r (k')X (k'+ 4),
b a

(5a)

(5b)

where Xh(k) is the Fourier transform of the dis-
torted state Q&y& and X~(k) is the transform of
Q cp, k and k~ are the center-of-mass momenta
in the initial and final states, respectively, and
6 is the physical momentum transfer, 6 =kf -ky.

We now state our new approximation as follows:
If the known physical 7. is highly peaked in a re-
gion near or on the path of integration in k space,
Eq. (5) should yield reasonably results using only
this physical (asymptotic) 7V, provided that the
momentum functions X &(k) are smoothly varying
in k.

For instance, in Eq. (5b) if vV is singular at the
origin, then the main contributions to the integral

cesses such as ion-ion scattering where the two-
body Coulomb interaction clearly dominates the
reaction. Our approach may be justified too by
the success of semiclassical theories in nuclear
and atomic physics' in which rearrangement col-
lision cross sections are calculated as the parti-
cles move in classical orbits of the dominant scat-
tering potential, V. Equation (4) may therefore
be considered as the completely quantum-mechan-
ical analog of these semiclassical theories.

Now that the transition matrix element is written
formally in terms of the two-body amplitudes in

Eq. (3) for nonrearrangement, and Eq. (4) for
rearrangement processes, it can be evaluated
either by the usual impulse approximation (for
short-range fV) or by the long-range approxima-
tion, the main subject of this note. But it should
be emphasized that these particular formal ex-
pressions [Eqs. (3) and (4)] do not exhaust the
uses of the long-range approximation which, like
the impulse approximation, should have quite
general application in reducing the complexity of
many-body scattering pr oblems.

Consider the momentum-space representation
of the matrix element of Eq. (4) by taking the
Fourier transform of each of the three functions
0&' 'qr&, fV, and QU'+'yu. (We assume here
that such transforms exist and for simplicity we
have set QU =AU. ) The form of the expression
obtained in this manner will depend on the specific
process under consideration. As an illustrative
example we consider a rearrangement collision
like that of reference 5, and neglect recoil effects
to keep the treatment clear. After a little algebra
we find

above arise at values of k= 0, provided that the
Xa b possess no singularities or resonances in

7

other regions along the path of integration. Then
the lack of knowledge of 7& in unphysical regions
where energy and momentum are not conserved
should not significantly affect our result, since
these regions contribute only a negligible amount
of the integral of Eq. (5). It is evident that we
must ignore the possibility of further singularities
in 7& in unphysical regions —a subject that will
be dealt with in a later publication.

From the arguments above, it is expected that
these methods are particularly applicable to prob-
lems in which the Coulomb interaction plays a
dominant role in the scattering. Fortuitously, the
analytic form of the Coulomb amplitude is known,
and satisfies our criteria since it is singular at
the origin of the path of integration in k space:

7(k) exp-[ i@in-(k')]/k' = k '~"/k',

where g =ZZ'e'/RU is the usual Coulomb parameter
To illustrate the utilization of the Coulomb t ma-

trix, we consider in this note only one of several
promising applications: the low-energy ion-ion
inelastic process, N' +N" -N" +N". The prin-
cipal interaction in the 0 operator here is the nu-
clear potential between the two ions, and we have
included this effect by considering an extremely
simplified distorted-wave model. We assume that

is equal to the asymptotic wave function qa,a
modulated by a real function, f(r), of the relative
coordinate between the two ions. f(r) describes the
large absorptive effects of the nuclear potential:
It is zero at r=0 and increases smoothly to unity
around r=R„ the sum of the radii of the two N"
nuclei. The one adjustable parameter in f(r) de-
scribes the rate at which the function increases
from zero to unity.

For the function y, we again use a simple
reasonable model. We let q represent an ion
"core" of N to which is bound a neutron form-
ing the ground state of N', and a second ion "core"
of N'4. Then the final state, cpb, represents the
N" ion, composed of a neutron bound to the N"
core, and the remaining ion core, N". The re-
sults of the calculation are shown in Fig. 1 along
with the recent experimental data of Jobes and
McIntyre. ' We also include the results of our
method when all effects of U (the absorptive nu-
clear interaction) are ignored, i.e. , with 0&'+'=l.
These latter results are similar to those obtained
from the earlier work of Breit and Ebel' on the
semiclassical theory of neutron transfer in ion-
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FIG. 1. Differential cross section for @~3 ions from
the reaction N +1V —N +N at 32 MeV. The experi-
mental points of Jobes and McIntyre are shown, along
with the curves obtained from the present theory. The
solid curve includes the effects of the nuclear potential
between the two ions, while the dashed curve neglects
these same effects.
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ion reactions.
For the second application of the theory, we

consider stripping and pickup processes. These
provide rather good tests of the approximation
because in addition to many experiments, there
exist fairly accurate distorted-wave calculations
with which we can compare our new methods.
Specifically, we calculate the cross section for
the process p+C~2-d+ C" at high energies (-100
MeV). In order to keep the treatment simple, and

in view of the large kinetic energies of the parti-
cles, we now ignore the Coulomb potential and
consider instead that the dominant interaction 7 &
is due to the absorptive effects (imaginary nuclear
potential) felt by the proton. (One can also include
the deuteron's absorptive potential in a symmetric
way. ) We assume r& to have the usual form due
to diffraction of particles by a completely absorb-
ing sphere of radius R:

w(k) =J,(kR)/kR =j,(kR')/kR'.

This function should also be suited to our methods
since in momentum space it is peaked at the origin,
due to the fact that the absorptive potential is char-
acterized by large impact parameters in configura-
tion space. The spherical Bessel function is sub-
stituted only for calculational purposes and gives
virtually the same results as J„ if R and R' are
properly related.

In this calculation we make the additional ap-
proximation of neglecting all other interactions

0.0 I
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FIG. 2. Differential cross section for deuterons from
the pickup reaction p+C 2 d+C at 95 MeV. The ex-
perimental points of Selove are shown by circles. The
result of the Born approximation (Chew-Goldberger the-
ory) is shown by curve C, and the result of a distorted-
wave Born approximation by curve A. The present the-
ory is given by the solid curve B.

except 7&, that is, we set O=O'=1. Thus the mo-
mentum functions used in Eq. (5) are merely the
Fourier transforms of the asymptotic plane-wave
functions y &, for which we use a model based
on a C" core, similar to the model used in the
neutron transfer problem above.

Figure 2 shows our results along with Selove's
experiments for the (p,d) process on C" at 95
MeV. ' For comparison, the results of both the
Born approximation (Chew-Goldberger theory)'
and a distorted-wave optical-model calculation
by the author' are included. It should be empha-
sized that even with the extremely simplifying
conditions ~ =~'=1, one achieves significant im-
provement over the Born approximation, and
rather good agreement both with the distorted-
wave calculation and with experiment. By includ-
ing distortion effects (of the Coulomb potential,
for instance), one could obtain significant improve-
ment over results of current distorted-wave the-
ories.
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The other approximate method of solving Eq. (5)
is that of Chew-%ick impulse approximation. The
strong short-range interactions in configuration
space will yield extremely slowly varying func-
tions, T&(k), in momentum space. From Eq. (5a)
we see then that if the momentum functions X(k)
(which in the impulse approximation are the trans-
forms of the asymptotic functions p, i.e. , 0 =1)
are peaked at k =0, the major contributions to the
integral come only from this region. Thus for
large momentum transfers we can approximate
7 &(k - 4) by 7&(4), and take it outside the integral
as a multiplicative factor. The resulting integral
over only the momentum functions X(k) give the
effects on the scattering amplitude of the "specta-
tor particle as in the usual formulation of the
impulse approximation. Another advantage of our
formalism is that it offers a relatively simple way
of calculating corrections to the impulse approxi-
mation. Such corrections appear in a multiplica-
tive rather than additive way if one uses X =cp
(0 e 1) in a distorted-wave approximation.

A forthcoming paper will give results for other
applications of the theory (in particular to the scat-
tering of electrons by hydrogen atoms) as well as
expand on both the details of these calculations
and the general formalism.

The author would like to thank Professor G.

Breit for bringing up the specific problem from
which this approximation evolved, and Professor
L. Durand, III, and Professor G. Rawitscher for
many helpful discussions and comments.
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In a previous Letter' we showed experimental
evidence for a line spectrum in the 1-GeV brems-
strahlung y-ray beam obtained using a diamond
radiator. In this Letter we give some results of
the calculations and measurements concerning the
polarization of a 150-MeV photon line.

In high-energy electron bremsstrahlung, the
radiated photons are emitted preferentially with
a state of linear polarization parallel to the plane
determined by the direction of the primary elec-
trons and the recoil momentum of the nucleus. In
a crystal only those recoil momenta are allowed
which, in suitable units, are coincident with the
reciprocal lattice vectors. Therefore the process
is not symmetrical around the direction of the
primary electron. It follows that the entire brems-

strahlung beam has a net polarization, with re-
spect to a crystal plane.

The first calculation of this polarization was
performed by Uberall'; we have repeated it in
order to take into account the discrete structure
of the lattice planes. The importance of this struc-
ture has already been stated in other works. ' ' A
few numerical results of this calculation were giv-
en by us in reference 1. At the same time Uberall
also had recalculated the polarization, but his nu-
merical data' are not comparable with our experi-
ment.

%'e define the polarization of the entire y-ray
beam as

I'=(I -I )/(I +I ),


