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8 Appendix of M. Sugawara and A. Kanazawa, Phys.
Rev. 123, 1895 (1961).

TAppendix 2 of M, Sugawara and A. Kanazawa, Phys.
Rev. 126, 2251 (1962).

8Appendix 1 of reference 7.

%A more rigorous definition of (x2®) g given by Eq.
(11) of reference 7.

101f high-energy scattering is described in terms of a
purely imaginary potential which accounts for the dom-
inant absorption at high energies, the phase of the am-
plitudes near the forward direction is strictly 37, in-
dependent of the details of the imaginary potential.
Therefore, the condition (3) depends primarily on the
relative rates of change with energy of the real and imag-

inary parts of the effective potential.

UThe estimate below gives only the order of magnitude.
This, however, is quite sufficient. See also M. Frois-
sart, Phys. Rev. 123, 1053 (1961). According to our
notation, the upper limit due to Froissart is <%. We
have shown in this note that only {(s°) and {s~2) are con-
sistent with analyticity, unitarity, and the purely imag-
inary forward amplitude at infinite energy.

12The latest experimental figure is ay+2a3=-0.008
+0,007 [W. S. Woolcock, in Proceedings of the Aix-en-
Provence International Conference on Elementary Parti-
cles, 1961 (C.E. N. Saclay, France, 1961), Vol. I, p.
459]. It is interesting to see how close this figure is to
the borderline between two cases of different zeros.
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An important problem in relativistic quantum
field theory is the question whether all particles
are to be described by moving poles (or Regge
poles)* in the complex angular momentum plane,
or whether the amplitudes can have single=-particle
poles and resonance poles in the energy variable
which are not associated with angular momentum
trajectories at all. In the present note, we use
the general notions of relativistic dispersion
theory and an assumption concerning the absence
of a natural boundary in the complex angular mo-
mentum plane, in order to show that the inter-
polating partial-wave functions F(s,)) have no
s -independent poles in the X plane, at least for
Rex > -3. This implies, for instance, that a con-
stant total cross section for { -« in an elastic
crossed channel must be due to a moving pole
r=als), a(0)=1, because we cannot have At(s,t)
~C(s)t %0 with @,=1 in a whole neighborhood of
s=0. Furthermore, we indicate, with some ad-
ditional assumptions, that the invariant scatter-
ing amplitude F(s,t) has no single-particle poles
describing particles with spin larger than one
which are not manifestations of a pole trajectory
in the » plane.

Let us consider the elastic scattering of two
spin-zero particles with equal masses p. We
omit single-particle states with the same mass,
and we assume that both particles are distinguish-
able. If the invariant amplitude F(s,f) is analytic
in the cut ¢ plane and bounded by a polynomial of
degree N for ¢t—<, then we can define functions
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Fi(s,)\) by?

1 1 v
F:t(s’ )\)_ ;»/;I_LZdvgq—ZQ)-(l"‘ 2q2)At(syv)a (1)

where

Ai(s,v) =At(s,v)¢Au(s,v), (2)

4¢°=s-4p*, and A; and A, are the absorptive
parts of F(s,t) in the ¢ and # channels, respec-
tively. The real analytic function F,(s,)) is
regular for Rex >N, and for »=1>N (I =integer)
it represents a unique interpolation of the phys-
ical partial wave amplitudes,

+1
Fi)=3f " deFGs,t=20-c)PC); ()

we have

Fi(s,l)=Fl(s) for I=even/odd, I>N.

In an earlier paper® we have shown that the
possibility of continuing the function F, (s,n)
into the region Rex <N depends entirely upon
the properties of the absorptive part A i(s,v)
for v -, For example, a term of the form

B(s)

va(s) (Inv)
in the asymptotic expansion of A, gives rise to
a singular term in the ) plane which is of the
form

F(s,)=T(s)/la(s)-2 P L )
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for B# -1 and F(s,n)=I(s) In[a(s)-r]++-- for
B(s)=-1. In principle it could happen that the
continuation of the function F (s, ) into the re-
gion Rex <N is somewhere blocked by a natural
boundary. We consider it improbable that such
a curve of singularities exists in the \ plane, at
least as far as the region Rex > -} is concerned,
and we shall assume in the following that the
function Fi(s,)\) is regular in the region -3 <Rex
<N except for isolated singularities.*

Before we discuss the singularities in the )
plane, it is important to consider the function
F,(s,)) as an analytic function in s and A. For
Rex >N, the representation (1) is valid and, ex-
cept for the branch points of @, [1 +v/2¢%(s)], the
region of analyticity of F (s, ) in the s plane is
determined by that of the absorptive part At(s ,U)
for v =4pu.5

For reasons of simplicity we assume that A,
is regular in s except for the usual cuts and poles
on the real axis.® In the region -3 <Rex <N we
do not have the representation (1), and hence
other singularities may appear in the s plane.
However, as has been shown in reference 3,
there cannot be any x -independent singularities
except those which are also present for Rex >N.
As far as the x -dependent singularities are con-
cerned, it is very important to find out how poles
and branch points disappear from the physical
sheet of the s plane as we continue F +(s,x) into
the region Rex >N. This will be discussed in a
separate note.

Let us now consider the possible isolated singu-
larities of F,(s,)) in the x plane for Rex > -3.

We want to show that there cannot be any s -inde-
pendent poles, but only singular surfaces X = a(s)
with Ima (s +20) # 0 for real s on the elastic cut
4u®<s<s; (e.g., s;=9p?). For this purpose we
write the continued unitarity condition in the form

Fi(s +10, A)-Fi(s -10,2) = 2ip(s +i0)Fi(s +10,2)

XF (s-i0,)), (5)

where
p(s)=(s-4%/s)®, and F “(s*,\")=F (s,2).
As in the case of integer angular momenta, we

can continue Fi(s,)\) through the elastic cut into
a second sheet,” where we have

F,Ms,0=F (6, 0/[1+2ip()F (5,0)],  (©)

such that FtH(Si i0,))=F (s ¥40,2) for s real,

and 4p®<s<s;.® Suppose now that F,(s,2) has

an s -independent pole for »=),, then we see from
Eq. (6) that Ftn(s, A) has no such pole. The pole
would have to disappear suddenly as we continue
in s through the elastic cut from sheet I into sheet
II. It follows from the continuity theorem®?° for
functions of two or more complex variables that
such a behavior of the analytic functions F i(s, 2
is not possible. Hence we have no s-independent
poles for Rex > -3. For a pole trajectory x = a,(s),
it follows from the unitarity condition that

Ima, (s +i0)+ 0 for 4u®<s <s;. The real analyt-

ic function a,(s) has a cut for s =4,% and we
have

F s,a (s)=F O
+ ’ T+ +

(5,0 1“(3)) =0,

We note that s -independent branch points are
not excluded by the argument given above. In
potential scattering, such branch points are known
to occur if the potential contains a term propor-
tional to » "2 which modifies the centrifugal term."
They are related to the “collapse into the center,”
and therefore one may expect that they are not
present in the field theoretic case. If this is so,
our argument shows that the high-energy behav-
ior of the absorptive parts of F(s,t) in the crossed
channels (¢ and # channel) must be determined by
a pole trajectory (or possibly a branch point tra-
jectory, or even another moving singularity);
the essential point being that we cannot have a
constant power law like A (s, ) ~C(s)t!. Espe-
cially we see that a constant total cross section
for ¢t - must be due to a moving pole, X = a,(s),
with @,(0)=1, because we cannot have At(s, t)
~1C(s) for a neighborhood of s =0.

What are the implications of this result for
the amplitude F (s, t) itself? We assume that
F,(s,x) is sufficiently bounded for |x |-, Rex
> -3, so that we can write a Sommerfeld-Watson
representation of the form
1 [-3+i

F = -—
*(s,t) 2m

1T

o0
dr (20+1) —
SINT)X

e F (s,))

N

x3[P (~c)£P _(c)]+ 2 (21+1)
A A 1 =0

x[Fl(s)—Fi(s, l)]%[Pl(c) :tPl(-C)]

204(s)+1 .
D L sk, 0

(M
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plus contributions from branch cuts and other
moving singularities in the X plane. Here c=1
+1/2¢%, and Fl(s) is the physical partial wave
amplitude as defined by Eq. (3). AlthoughF(s,1)
is uniquely determined by the partial waves for
[>N, it is not necessarily equal to Fl(s) for

1<N. We note that along the elastic cut 4u?<s
<s;, both functions satisfy the unitarity condi-
tions (5), and this gives rise to certain restric-
tions, but it does not exclude terms of the form

FZ(S)-Fi(s,l)~b(S)/(m2-S), ®)

where b(s) is an analytic function with a cut along
the real axis for s = 42,

We suppose that the representation (7) is valid
for s on and near the real axis. For s <0 we are
in the physical region of the ¢ channel, and the
bound'? |F,(s,?)| < const {(Int)? for ¢ -« is appli-
cable. Since it is impossible that there are can-
cellations between the different terms in Eq. (6),
we conclude that Fy(s)=F,(s,1), I=even/odd,
should be valid for />1. Hence, if one accepts
our assumptions, it appears that all single-
particle poles of F(s,t) which describe particles
(or resonances) with spin larger than one must
be due to moving poles in the x plane. For <1
we cannot exclude the existence of poles like (8)
which are not related to any trajectory. Itwould
be very interesting to see whether a more ex-
haustive use of the unitarity condition could re-
strict or even eliminate the difference between
Fl(s) and F (s,1) for I <1.
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