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Figure 1 shows the current-voltage character-
istics observed by Smith' and Mc Fee in piezo-
electric semiconductors, and by Esakis in bis-
muth in the presence of a strong magnetic field.
We propose that both types of departure from
Ohm's law may be simply ascribed to the acousto-
electric current4 accompanying a large acoustic
flux that is produced by a traveling-wave ampli-
fication process. We also propose that this acous-
tic flux is limited in steady state by a nonlinear
loss mechanism arising from the traveling-wave
interaction with the carriers.

Traveling-wave acoustic amplification has been
observed in piezoelectric semiconductors and has
been postulated in bismuth, and the departures
from Ohm's law have been ascribed to it. '&' How-
ever, a model of sufficient detail for a physical
understanding of the non-Ohmic effect has not yet
been presented.

To obtain the current-voltage characteristic, we
require the steady-state acoustic flux as a function
of the applied fields, and then an expression for
the acousto-electric current arising from the
acoustic flux and applied fields. We shall con-
sider first a piezoelectric semiconductor with an
applied electric field Ed, and shall make use of
a one-dimensional simplification considering only
currents and acoustic traveling waves in the x di-
rection. In the previous analysis of acoustic gain
and loss, s~ current density (for extrinsic n-type
material) was written as

J = p,q(n n+)(E+E +q&ss /sx,
S 8

(b)

FIG. 1. (a) Current vs drift-field characteristic ob-
served for an extrinsic piezoelectric semiconductor
such as CdS or ZnO. The kink occurs when pSd - sound
velocity. (b) Current-field characteristic observed in
b th he ~cyc7 ~1' The kink occurs when the drift
velocity of carriers in the direction perpendicular to the
Ed and 8 fields exceeds the sound velocity.
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where ILL is the mobility, q is the electronic charge,
n is the average carrier concentration, ~ is the
carrier diffusion constant, F- is the wave-periodic
longitudinal electric field accompanying a travel-
ing wave due to the piezoelectric effect, and n~ is
the wave-periodic amplitude of carrier concentra-
tion arising from carrier bunching by the wave.
A theory for acoustic loss or gain was developed
by using Poisson's equation and the equation of
continuity to obtain the displacement, D, in terms
of E from (1); then substituting this in the equa-
tion D = eE+eS (piezoelectric constant e and strain
S) to obtain E(S) Thi.s self-consistent electric
field was then substituted in T=cS -eE (T= stress)
to obtain a complex elastic stiffness constant, c*,
describing the anomalous dispersion of the acous-
tic wave. The resulting linear (small-signal) the-
ory, in which the terms in the product n~E are ne-
glected, yields the time constant for decay (or
growth) of a wave:

(~,/y)
2o.'v = Q(o = K

1+((u /y(u)'(1+co'/(u (u )''
C c D

(2)

where E = electromechanical coupling constant,
&oc = c/e, ~D = v'/X), v = sound velocity, o = conduc-
tivity, and y = 1 vd/v -where vd = pEd = the Ohmic
drift velocity of the carriers. Equation (2) is plot-
ted as a function of co in Fig. 2. Note that there is
a maximum build-up at (d2= &~(dD and that the gain
decreases at higher frequencies due to carrier dif-
fusion. Also shown on Fig. 2 is a linear loss mech-
anism proportional to u' which is of the Akhiezer"
type and which has been (very roughly) estimated
from the work of Bommel and Dransfeld" on quartz.
A build-up of acoustic flux through the application
of Ed is then to be expected over a band of frequen-
cies whose upper limit is determined by the inter-
section of the linear loss and gain curves of Fig. 2.

Steady state for the acoustic flux under amplify-
ing conditions occurs when the amplitudes of the
amplified waves are sufficiently great to bring a
nonlinear loss mechanism into equality with the
gain. (Linear loss mechanisms such as isotope
or impurity scattering or the Akhiezer relaxation
mechanism clearly cannot limit the acoustic flux. )
The loss mechanism which then occurs is one in
which interference between a pair of waves of the
group which is being amplified produces a third
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Eq. (1), we find

8 B cled f BE Bn ) BE 8 n
S S

s»st sx ( s sx s») sx s»' '= —= p.q n —+E + pqn —+ q ~

and since

n =Q.n, c os(k. x-(u.t +y. ),s i i i i in'
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and E =+.E.cos(k. x -(u. t+ y. ),2Z '
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FIG. 2. Three plots of Eq. (2) for piezoelectrically
active shear waves in n-type CdS under conditions of
acoustic gain (Q negative}. An ~2 loss term (Q positive)
of Akhiezer type is also shown. For ~~ =10', 0. —= 0.01
0 cm; for ~~=10 ~, 0=—0.1 0 ' cm ~.

wave at the sum frequency such that the sum fre-
quency is higher than the highest frequency for
which linear gain exceeds linear loss (see Fig. 2).
Loss from the wave of the sum frequency may then
occur by the Akhiezer mechanism whence crystal
momentum is lost through Umklapp processes,
and acoustic energy is dissipated as heat. This
pairwise interference to produce a sum frequency
is the familiar three-phonon collision, and the
rate of this process may be obtained, using per-
turbation theory, from the square of the term in
the Hamiltonian involving the amplitudes of the
three waves and the density {in energy) of the final
states which satisfy ~E+(d~ =(dn and kE+k~ =k„,
simultaneously. We propose that the nonlinear
(nsE) terms in the amplification theory make the
major contribution to the cubic term in the Hamil-
tonian. In some cases, the density of final states
may be enhanced for three waves all of the same
branch, because of the anomalous dispersion (&u

increasing slightly faster than linearly with k) ac-
companying the tr ave ling-wave interaction.

The cubic term in the Hamiltonian may be ob-
tained from the energy density term fE.Ddx. From
Poisson's equation, the continuity equation, and

where yi is the phase angle between the bunched
carriers and the self-consistent electric field ac-
companying the ith wave. Using Eq. (5), Ju can
be computed from the linear amplification theory.
The physically revealing result is that in the
acousto-electric component of the current, the
carriers flow with the wave when it is being at-
tenuated and against the wave when it is being am-
plified. Hence, when Ed exceeds the threshold
required for amplification, the acousto-electric
current which accompanies waves that are being
built up, subtracts from the Ohmic current, Jp
= pqnEd [as illustrated in Fig. 3(a)], and causes
the "kink" in Fig. 1(a).

In bismuth, at low temperatures and with a large
applied magnetic field, elastic-wave amplification
commences when the component of drift velocity
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FIG. 3. (a) Vector diagram of Ohmic {o) and acousto-
electric (a) currents for an extrinsic piezoelectric semi-
conductor with Ed & Eki~. (b) Vector diagram of Ohmic
and acousto-electric currents for electrons (e) and holes
(h) in bismuth for Ed &Ekj~ Equal Hall angles are as-
sumed for electrons and holes.

the first term on the right of Eq. (3) yields compo-
nents of D at the sum and difference frequencies
proportional to the product of two wave amplitudes
which, when multiplied by F- and integrated over
volume, yields an energy density proportional to
the product of three wave amplitudes.

The dc acousto-electric current accompanying
the steady-state acoustic flux arises simply from
the nsE term in Eq. (1). Using Eq. (4), it is

J = p.qP. n .E.cosy..,
Q 22 2 2'
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of electrons and holes in the direction perpendicu-
lar to E and 8 exceeds the sound velocity. '~' Space-
charge-free bunching of electrons and holes results
from the difference of electron and hole deforma-
tion potentials associated with the acoustic strain.
As in the semiconductor case, the gain falls off at
high frequencies due to carrier diffusion, and there
exists a maximum frequency above which linear
loss exceeds linear gain. (The important linear
loss mechanism for bismuth at low temperature
may be mode conversion at the sample surfaces. )
Nonlinear losses which yield a steady-state acous-
tic flux arise in analogous fashion to those in the
semiconductor case, i.e. , the space-charge bunch-
es of one frequency are acted upon by the deforma-
tion potential gradients of a different frequency
converting acoustic energy to the sum frequency
from which it is quickly dissipated. The acousto-
electric currents of electrons and holes are driven
by their respective wave-periodic deformation po-
tential gradients acting on the carrier bunches of
corresponding wave vector. As in the semicon-
ductor case, under amplifying conditions, the
electrons and holes are driven in the direction
opposite to the acoustic flux, but they are also
acted upon by the magnetic field so that their
acousto-electric drift velocities are inclined to
the negative acoustic flux direction by their Hall
angles. Figure 3(b) gives a vector diagram show-
ing the Ohmic and acousto-electric currents for
Ed&Ek;nk. The acousto-electric current can be
seen to add to the Ohmic current in agreement
with Fig. 1(b).

This model differs from those of Esaki~ and
Miyake and Kubo, ' in that it does not assume any
additional scattering of carriers by phonons of the
amplified part of the acoustic branch, because the
acoustic wavelengths are long compared with the
deBroglie wavelengths of the carriers. The ap-
parent resistance of a sample for F.d &Ek k will

depend upon the time of measurement —for times
short compared with the build-up time for acous-
tic flux the resistance will be changed from its
small-field value only by field-induced changes
of the electron-phonon scattering. ~'

It seems probable that the current oscillation
observed by Esaki, ' Smith, ' and McFee' whose
period is that of a round trip for a sound wave
between the ends of the sample is a relaxation os-
cillation of the gain mechanism brought about by
the acousto-electric current accompanying the
acoustic flux reflected from the sample boundary.

Discussions of this problem with J. H. McFee,
E. I. Blount, and J. P. Gordon have been very
helpful. The manuscript has benefited from crit-
ical readings by C. Herring, J. C. Phillips, and
S. J. Buchsbaum.
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