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Composite states in nonrelativistic scattering
theory lie on Regge trajectories! corresponding
to poles in the angular momentum plane that move
with varying energy. Simple approximations?®~®
indicate that composite particles in relativistic
field theory have the same behavior. According
to the Regge pole hypothesis,*® particles like the
nucleon, that have customarily been treated as
elementary in field theory, also lie on Regge
trajectories. Is that in accord with describing
such particles by ordinary perturbation theory ?

It has been thought that elementary particles
behave in perturbation theory as objects of fixed
angular momentum.””® In reference 9 the PS-PS
theory of pions and nucleons is taken as an exam-
ple. (For simplicity, let us ignore here the iso-
topic spin of the pion.) Writing the Feynman
scattering amplitude as usual in the form A -éy.¢gB,
we have in second order

A=0,
B=-g?/(m?-u)+g?/(m?-s), (1)

where s and » are the Mandelstam variables.

The first term in the expression for B corre-
sponds to the nucleon, with @ =J-4=0. (It is pro-
portional to s°.) The second term, although it
represents the nucleon singularity in the s chan-
nel, corresponds in the « channel to an infinite
sequence of angular momentum poles with «

=-1, -2, -3, etc., just like the Born approxima-
tion in nonrelativistic scattering by a Yukawa
potential. Now in fourth order B acquires terms
that vary as s~ 1ns (for large s and fixed ) and
others that vary as s°, but none that varies as
s%Ins. Thus the subsidiary angular momentum
poles at @ =-1, -2,- -+ may be beginning to move,
as in potential scattering. For example, if @ =-1
becomes a = -1+ g2F(Vu)+++, then s~} +g°F (Vu)+++ -
appears in perturbation theory as s +g2F (Vu)s™!
X 1ns ++++; but in this order the elementary nu-
cleon pole continues to have a =0.

The situation is different, however, if we re-
place the virtual pion in the radiative correction
by a virtual neutral vector meson with mass A
and coupling parameter y. The amplitude B then
acquires terms that go, for large s and fixed u,
like s°lns. We suggest that the nucleon pole now
moves too.

The variation of a for the nucleon in perturba-
tion theory can then be studied as follows: The
contribution of a Regge pole with the parity of
the nucleon is given in Eq. (4.21) of reference 9.
However, in order to satisfy the symmetry con-
dition of MacDowell!® and Frautschi and Walecka,!!
there must be a related Regge pole with the op-
posite parity. The two a’s become coincident
at =0 and complex conjugates of each other for
u negative,!?13

Using the two equations, we have for the com-
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plete contribution'* at large s bVu) = -(v2g2/16 M1, () - [(Vu +m) Nu L)} +eee.
- @ (Vu) (6)
A= b__—_z(\gzl(ﬂ‘/z( Jum)) <s£;> {1 + exp[-ira(Vu) |}

It is easy to verify that these quantities obey a
a(-Vu) number of rules characteristic of the Regge pole
b(-Vu)(~Vu -m) [ s ) .

* S smma’ v \s {l +exp[-ira(-Vu)]};  formalism. Both a and b are real between u
SInma-vu 0 =0 and the first physical threshold at u = (m +21)?,
where they become complex; they both obey dis-
a(Vu) . A o
B -b (V) s {1 + exp[-ira (V) persion relations in Vx. The imaginary part of
~ 2 sinma (Vi) (so Pl “ a is positive. The real part of o increases
through v« =m up to threshold.
a(-Vu) . .
_ b(-Vu) S {1 exp|-ina( v )]} Some properties are unphysical, but these
2 sinma(-vu) \s, +exp wl seem to be attributable to perturbation theory.
@) The real part of @ increases to +~at threshold.
Above threshold the imaginary part decreases
Now with a equal to zero plus a correction of from +e to a constant as u - «, while the real
order y? and b of order y2g?, we can write part decreases from a finite value and goes loga-

- rithmically to -« as u —+=.'® The infinities at
A =[bWVu)/ma(Vu)|(Vu -m)[1 +a(Vu)In(s/sg) ++++ ] threshold are characteristic of this order of per-

+[b(-Vae) /ma(-Vu) [(-Vu - m) turbation theory in the case of the Schrdinger
equation with a Yukawa potential [where a = -1 -ivY
x[1+a(-Vu) In(s/sg) + === ], (energy)¥?, see reference 6]; they should not be
taken seriously.
B=[-b(Vu)/ma(Vu)|[1 +a(Vu) In(s/s,) ++ =+ ] If the nucleon has really turned into a Regge
-[6(~Vu)/ma(-Vu) [1 +a(-Vu) In(s/sy) +o+ . pole as a result of vector meson radiative cor-
rections, then a study of higher order corrections
3) can confirm the fact. The coefficients of powers

We compare these expressions with the results

. . of In(s/s,) to each order in y® must be such as to
of perturbation theory at large s for fixed u:

agree with the expansion of exp[a (V) In(s/s,)],

A =0+ (2g?/8n%)ml,(u) In(s/s,), where a(Vu) is a power series in y2. We shall
- assume that the exponential character of the
B=-[g*/(m® -u)]+ (v°g*/81) [ Lolw) - L) in(s/s,), higher corrections will be confirmed, for example
where (4) by the method of Sudakov.'®
1 Mdx In ordinary quantum electrodynamics of elec-
In(u) E[O (1 -x) + mZ -u)x +ux® -i€ (5) trons and photons (but with massive photons),

the electron must then be a Regge pole, with
We obtain corrections to @ =0 of order e?, much as in Eq.

(6). The leading terms in the amplitude at large
= 2 2 - - Y] 4+eee y
a(Vu) =0+ (y?/87%) (Vu - m)[Vulow) - (Vu +m)L, )] s and fixed 1 arel”

—ezyV[(-iy-P +m)/(m? —u)]yu +(e1/872) ln(s/so)yv{-iy-P[lo(u) -1 () ]+ mIO(u)}yu, )

where P is the initial electron four-momentum

minus the final photon four -momentum, while v the result
and u are the initial and final photon polariza- a () =0+(e?/8m2) (u - m?)[I, ) - 2I,(u) + Lw)]++--,
tions respectively.

In the simpler case of the electrodynamics of b=-(e?/2m{lo) - 21, ) + L) ]+ - - ®8)
spin-zero particles (still with massive photons), Again these are reasonable forms for a and b
the lowest order term 4e?P, P (m?®-u)™ acquires except for the wild misbehavior at threshold
the radiative correction -(64/2772)P#P,,[10(u) (and possibly for the logarithmic dependence of

-2I,(u) +I,(u)]1In(s/s,), so that we have (with a =J) Rea at infinity). At threshold Ima should go
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like p3+2Rea (where p is the barycentric momen-

tum in the u channel), b should be essentially
constant, and the threshold unitarity relation,

-p3+20 (4 42) Val(a +1) 5
8n? 2 Qa+1)T(a+3)’ (9)

Ima =

should hold. Presumably, the higher correc-
tions fix up the situation at threshold, as in
potential theory.

As the photon mass, A, tends to zero all of
our expressions become infrared divergent.
This comes as no surprise, of course, since
the divergence of the Compton amplitude in
fourth order must be present in order to cancel
the corresponding soft photon emission in the
double Compton cross section. We have not
fully analyzed the requisite modifications of the
Regge formalism for this limiting situation and
hope to return to the question elsewhere.

For finite photon mass, the photon is presum-
ably on a Regge trajectory if the electron is.

If we consider the correction to the amplitude
for the exchange of a photon between two elec-
trons (order e2) arising from the exchange of
three photons (order e®), the motion of the
photon pole should be apparent. Again infrared
divergences may arise as A - 0.

The S-matrix or dispersion relation approach
to relativistic quantum theory employs disper-
sion and unitarity formulas abstracted from con-
ventional field theory. If it is really true that
the Regge pole boundary conditions are also con-
tained in conventional field theory, as the pre-
sent work suggests, then there is no evidence
for any conflict between the two points of view.
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In a recent Letter,! Chew has shown the exist-
ence of a certain reciprocity between the nucleon
and the (3, 3) resonance. Essentially, he calcu-
lates the reduced width y,, in terms of the “re-
duced width” of the nucleon, y,, =3f2, and finds?

V33 gAsa,uyu/(l 'Asa,aa) :%711’ (1)

where Aa@ is the P-wave pion-nucleon crossing
matrix. Reciprocally, he may calculate y,, in
terms of y,,; he finds

Y1 5A11,33733/(1 'Au,u) =2y 35 @)

Since $x2=1, Eq. (1) and Eq. (2) are consistent
with each other (and with experiment), from which
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