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By extending previous work'»' to higher fields
and frequencies, we have produced nuclear polar-
izations as large as 51%%uo for the protons in the
waters of hydration in single crystals of lantha-
num magnesium nitrate, La Mg~(NO~)» ~ 24 H20,
in which 1%% of La'+ has been replaced by para-
magnetic Nds+. The method' is reviewed in Fig.
1, which shows the energy levels of a Nde+ ion
of effective spin 8= —,

' and a proton of spin I= —,
'

in a magnetic field H. One observes the usual
electron spin resonance transitions a at micro-
wave frequency ve, as well as nuclear resonance
transitions b at v„-10 ' v~. Because of small
admixtures of states by the electron-nuclear
dipolar coupling, it is also possible to induce
"forbidden" transitions c and d by the applied
microwave field II, ~ If, e.g. , c is strongly in-
duced, the relative populations N of states (--,', --,')
and (-,', —,') become equal to unity, while the elec-
tron spin-lattice relaxation maintains the popula-
tions of state (—,', —,') at exp(-hve/kT) and (—,', —,')
at exp(+hve/kT); T is the crystal temperature,
maintained by a bath of liquid helium. The nu-
clear polarization, defined by

P =- [N(M =-,') N(M = ---,')]/[N(M = ,')+N(M = —,'-)],

thus becomes ideally pf = tanh(hvs/2k T) =h vs/2k T.

('/2, —'/2)

hv. = g„PH

hv, ——gPH
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FIG. 1. Energy levels of an electron spin and a nu-
clear spin in weak dipolar coupling and in a magnetic
field H. The states are labelled by the high-field quan-
tum numbers (MgsNI).

This dynamic value is larger by ve/vz than the
static value p0=hvn/2kT. Similarly, saturation
of d gives an enhanced polarization, but of op-
posite sign. Saturation of a reduces p to zero.

In practice the actual polarization enhance-
ment E is found to be less than the ideal value
v /v„, because transitions a, c, and d are not

completely resolved, and also because nuclear
spin-lattice relaxation due to extraneous elec-
tron spins may not be negligible. To obtain
large absolute values of the dynamic polariza-
tion P =P,E, we have tried to do the following:
(1) Make P, as large as possible by operating
in a high H field. (2) Maximize E by making
Hv /ve large compared to the electron reso-
nance linewidth, AH, so that a, c, and d are re-
solved; this also requires high fields. (3) Care-
fully eliminate paramagnetic impurities in the
crystal other than the desired Nd' ions.

Lanthanum magnesium nitrate crystals are
fairly suitable for dynamic polarization of pro-
tons since they are highly hydrogenous, and
furthermore all rare-earth sites are magneti-
cally equivalent. We grow them from aqueous
solution in a desiccator at O'C, using 99.997%%up

purity La. To avoid hfs lines, Nd enriched to
98.5%%uo even isotopes is used. The g factor of
Nd'+ is anisotropic (g&=2.70, g11

=0.38), and
this allows a variation of the operating field H

(for a fixed frequency v ), through va.riation of
the angle 8 between H and the crystal z axis.
The linewidth ~H is also anisotropic'. At v

=35 kMc/sec, 9=90', H=9.3 kOe, and b,H=4. 5

Oe; at 8=30, H =18 kOe, and ~H= 9 Oe. The
resolution of a, c, and d is unfortunately not
very dependent on 8. At high fields Nd' has a
considerably narrower linewidth than Ce'+, used
earlier at lower fields. '»

Our dynamic polarization apparatus for use at
H —20 kOe, ve-50 kMc/sec, and T —1.5'K is
shown schematically in Fig. 2. The sample crys-
tal, a flat hexagonal plate -1 cm in diameter
and -2 mm thick, is placed in a nuclear resonance
coil contained in a cylindrical microwave cavity
with a volume of 3 cm'. The coil is connected to
a simple Q-meter type' of magnetic-resonance
detector, which has the virtue of linearity. Since
the crystal is larger than the wavelength of the
microwaves, we use a high-mode tunable cavity,
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FIG. 2. Schematic diagram of proton-polarization
apparatus.

which may be swept through several different
resonant modes during the time the forbidden
transitions are being induced; this assures that
the microwave H, field will, on the average, ir-
radiate the entire crystal uniformly. The cavity
is coupled via a thin-wall waveguide, attenuator,
and microwave switch to a klystron of fixed fre-
quency v .

Experiments are performed as follows: At
thermal equilibrium at the bath temperature T,
a nuclear resonance signal at v is recorded.
Then the microwaves are switched on and the H
field set to a value to induce transition c (or d).
After a steady state is reached (-5 minutes), the
microwaves are switched off and the nuclear
resonance is immediately recorded and found to
be enhanced by the factor F-. This enhanced pro-
ton polarization p =Eh v /2kT is then observed to

Pl
decay approximately exponentially to the thermal
equilibrium value in a characteristic time T1~.
Some results are given in Table I, along with
calculated values of the theoretical ideal polari-
zation Pz. The largest polarization obtained, P

= 51%, is significantly greater than values pre-
viously reported, and indicates that even larger
polarizations will be obtained at still higher fields
and frequencies. The microwave power required
to saturate a forbidden transition is -20 mW for
a crystal volume -0.1 cm3. One could probably
produce a 50% proton polarization in crystal vol-
umes of several cms, which may be useful as
polarized targets for high-energy nuclear scat-
ter ing experiments.

A polarization of 51% in a field H; = 20.1 kOe
corresponds to a proton spin temperature T~
= 0.004'K, so that a final spin temperature Tf
=HfT;/Hf in the microdegree range may be
reached upon demagnetization to a low field Hf
in times short compared to the proton spin-lat-
tice relaxation times T1„. We have demagnet-
ized to a final proton spin temperature Tf = 90
microdegrees at Hf = 500 Oe, where we find Tl„
=125 sec. We observe that 7'1„~H' in this re-
gion, so that lower temperatures could be reach-
ed and maintained only for increasingly shorter
times.

We wish to acknowledge with thanks the very
appreciable contributions of P. L. Scott in this
work.
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Nd enriched to 98.5 /c even isotopes.
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In this note we propose a new method for the
production and the analysis of a polarized beam
of high-energy gamma rays. The method is based
on the interference effects which are observable
in high-energy electron pair production on crys-
tals. As a consequence of these the absorption
rate (inverse of the mean free path) of very high-
energy photons in crystal matter depends on their
linear polarization. This suggests the possibility
of using a thick crystal for the polarization and
analysis of high-energy gamma rays. The polar-
ization is effected by preferential absorption of
the unwanted polarization component, and the
analysis by transmission measurements, as in
the case of a polaroid filter for visible light. Ex-
tensive theoretical work on the interference ef-
fects of high-energy electrodynamic processes
in crystals has been done by Uberall, ' and re-
fined experiments have given results which are
in excellent agreement with the theory. '

Another method for the production of linearly
polarized gamma rays by means of interference
effects in a crystal is based on bremsstrahlung. '
In this case the theory is also in excellent agree-
ment with the experimental results obtained with
electrons of -1 GeV.4

As a polarimeter the device we propose is per-
haps unique in the high-energy region, where the
application of other methods based on the angular
distribution in pair production and elastic photo-
production of m on nuclei of zero spin' requires
very difficult experiments. A unique character-
istic of the device is that, since it is both a po-
larizer and an analyzer, one can build two or
more of them and cross-calibrate them with each
other. The polarizing power of the device can
therefore be directly measured.

j JI (x)=I (0) exp[-Z x]. (1)

If the beam was originally unpolarized [I~~ (0)
=I (0)], we now have a polarization:J

I ( ) = [I ( ) -I (x)]/[I ( ).I (.)1II ~ Il

=tanh[-,'x(Z -Z )].tl

(2)

From Eq. (2) one can see that this method
could, in principle, produce any degree of po-
larization, with an appropriate choice of the
thickness x. This is achieved with a loss of the
original intensity which can be expressed in
terms of the polarization P(x) and of a param-

The absorption of high-energy photons is mainly
due to electron pair production, a process which
is already known to give interference effects. '&'

Let us consider the case of a cubic crystal, where
the momentum k of the incoming gamma rays is
in the (001) plane and makes a small angle o. with
the (110) axis. The (001) plane is then a symmetry
plane. We find that the total cross section for pair
production depends in this situation on the lin-
ear polarization of the gamma rays.

Let us denote by Z~~ and Y' the total cross
sections per unit volume of the crystal for gam-
ma rays which are linearly polarized in the (001)
plane and orthogonal to it. The two polarization
components will be absorbed with different mean
free paths; i.e. , after having penetrated a thick-
ness x of the crystal the intensities of the two
components will be reduced according to'

I (r) =I (0) exp[-& x],
II Il II


