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the ratio o(£,,t) /o(E,, t) at a moderate value of t).
(3) The connection which we have found between
radiative effects and Regge poles puts the calcula-
tion of electromagnetic radiative corrections in a

new. perspective. For example, it is our knowl-
edge of the fine structure of the positronium spec-
trum which leads us to believe that there probably
are spin-dependent terms which should be summed
in an exponential factor in the electron-proton
scattering cross section. Also, the main part of
the radiative corrections in a given process at
high energy can probably be estimated directly
from the known energy spectrum of the interme-
diate states allowed in the crossed channel.

(4) Finally, we would like to make a remark on
the question of the origin of the Regge poles which
has been widely discussed recently. In the theory
of strong interactions, where we do not have a
consistent field theory to start with, the question
of whether Regge poles are “fundamental” or
whether they can be derived by calculations based
on a specific Lagrangian is rather a matter of
taste (or, as has been said, a “philosophical”
question). In quantum electrodynamics, the situ-
ation is different, because there exists a field
theory enabling us to make predictions which can
be tested experimentally. And since a Regge be-
havior of the cross sections can be obtained by a
consistent high-energy approximation to the field
equations, we do not see any reason at present to
question the elementary nature of the photon.
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A scattering amplitude' as a function of energy
t and momentum transfer s is known to have sin-
gularities at threshold values of these variables
and on Landau curves.? It is a remarkable prop-
erty of Landau singularities that the threshold of
one of the variables, e.g.. ¢, is a line in the (s,{)
plane which, as s increases to infinity, is asymp-
totic to an infinite number of Landau curves.* On
the other hand, it has become clear recently that
the asymptotic behavior of the scattering ampli-
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tude at high s is determined by analytic properties
of partial-wave amplitudes f;(t), as functions of
angular momentum /. in the channel where Vt is
the total energy.! The problem is how the accu-
mulation of Landau curves near the threshold val-
ue of ¢ is manifested in the behavior of singulari-
ties of the amplitudes as functions of angular mo-
mentum [. It will be shown that at the energy ¢

=t; corresponding to any two-particle threshold,
the accumulation of an infinite number of poles
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on the line Rel = -} takes place. We shall present
also some arguments for the statement that at the
energy corresponding to an n-particle production
threshold, the accumulation of an infinite number
of poles must occur on the line Rel=-}- i(r - 2).

This result means, in particular, that the in-
variant scattering amplitude for { equal to any n-
particle threshold cannot decrease with increas-
ing s faster than 1/Vs. This limitation on the rate
of decrease of an amplitude is the consequence of
unitarity and analyticity only. The proof that the
accumulation of poles occurs uses the finiteness
of the interaction range at fixed energy.

In spite of the accumulation of poles, one man-
ages to calculate the asymptotic behavior of the
absorptive part of the amplitude for ¢ near 4u?

(1 being the pion mass). The contribution of the
poles that accumulate on the line Rel = -1 turns
out to oscillate even for t<4p?. An oscillatory
behavior for ¢<4pu? of the absorptive part of the
amplitude describing the elastic scattering am-
plitude in the s channel is in contradiction with
unitarity in the s channel,® because the unitarity
condition in the s channel requires the positive-
ness of the absorptive part in the interval 0<¢
<4p® Hence it follows necessarily that a partial -
wave amplitude in the ¢ channel in these cases
must have at least one pole on the real axis to
the right of 1= -} for small positive 4u® -¢. This
result may be considered as a purely theoretical
argument in favor of the necessity of the vacuum-
pole existence. From the point of view of non-
relativistic quantum mechanics, the presence of
a pole for Rel> -1 means that the potential cannot
be repulsive everywhere®: [urdr@®>0. The state
ment made above means that an interaction com-
patible with unitarity and analyticity must be at-
tractive in this sense.

Let us consider a partial-wave amplitude f;(¢)
for the scattering of identical spinless particles.
For [ on the half-plane to the right of all singu-
larities of f; in the complex [ plane, the following
relation holds™:

1 2s 2s
==
fl() 7y Ql(l +t__§-4u )AI(S,L‘) mE (1)

where A (s, t) is the absorptive part of the ampli-
tude in the s channel. Ql(x) is the Legendre func-
tion of the second kind. Hence, as ¢t »4u?,

r'(+1 o
fl(t)—_- 7h(~+__l_*(t_4u2)l él—(s’t)ds,
71722201+ 9) M
I#-12n+3), n=0,1,-.-. (2)

The partial wave f;(¢) for 4u®<¢<16p? satisfies
the unitarity condition

(1/20)[f, () -f 5 (O] = (R /) (OF 5™ @),

k=4t -4p?)¥?;  w=43VL. (3)

It follows from this relation that ¢(t) = (k/w)f;(¢)
is less than unity for real I. On the other hand,
according to (2), ¢;(¢) is proportional to
(t-4p>)t*a,

If the Formula (2) is valid for Rel < -1, then
@;(t) may become arbitrarily large for ¢ -4p?
sufficiently small. This means that the Integral
(2) must not exist for Rel < -4, i.e., A,(s,?) at
t=4u? cannot decrease faster than 1/\/s, as s
increases. As a consequence, ¢,(f) must have
singularities as ¢ -4u? for Rel > -}. Let us sup-
pose that for Rel > -1 there are only a finite num-
ber of poles at points x,,. Then ¢;({) may be rep-
resented in the form

<pl(t) = ¢l(t) =Zn[rn(t) /(1 - xn)] exp|-6(I - xn)]. (4)

Here 7, (&) are the residues at the poles A, [rn
~(t-4p)n *2].5 5 is an arbitrary positive num-
ber, and ¢;(¢) has no singularity for Rel > -1,
Owing to the presence of the exponential factor
exp[-6(1 -2y,)] in (4), ‘771 decreases exponentially
as Rel » «, Eﬁl(t) may be represented in the form
(2), where A, =A, -AA, must be substituted for
A,, AA| being the contribution from the poles
considered. The sum 27, exp[-8(7 -1,)]/(1-x,)
being finite at ¢ »4u?, @;(¢) is also finite for real
[ in virtue of the unitarity condition. Hence we
arrive at the conclusion that Al also cannot de-
crease faster than 1/Vs, and consequently &;(¢)
must have singularities at t =4u? for Rel = -4,
contrary to its definition. This means that ¢ l(t)
cannot have a finite number of poles for Rel > -}
and ¢ +4p% It is easy to show that this conclusion
would not be changed if ¢;(¢) had, in addition, any
finite number of branch points for Rel > -4.

Thus we arrive at the conclusion that as ¢ »4pu2,
17 l(t) must have an infinite number of singularities
near the line Rel=-}.

It easily can be seen that the same situation oc-
curs at any two-particle threshold. For this pur-
pose it is sufficient to consider the amplitude for
any reaction where the particles which give rise
to such a threshold are present in the initial or fi-
nal state, because all these amplitudes, related
by the unitarity condition, have common poles. An
invariant partial amplitude Sab for the transition
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of two particles into two is proportional to kalkbl

kg and kp being the initial and final relative mo-
menta. The amplitulde witklx bounded modulus anlal—
ogous to ¢, ¥gp =ka?fapkp?, goes like (kgkp) ™2,
and consequently at the corresponding threshold
value t (k, -0 or kp - 0), we encounter the same
phenomenon. It is interesting to note in this con-
nection that since (because of the saturation of
nuclear forces) nuclei with arbitrarily large mas-
ses of the order mA can exist in theory if the elec-
tromagnetic interaction is switched off, two-parti-
cle thresholds are present for arbitrarily large ¢.
This means that the invariant amplitude A, cannot
decrease faster than 1/Vs for arbitrarily large ¢

>~ (2mA)2.

Let us consider the situation near a many-parti-
cle threshold. With this purpose in mind, consider
a partial amplitude for the transition of two parti-
cles into n particles with angular momentum [ oc-
curring in the unitarity condition for the elastic
amplitude. Such an amplitude near the production
threshold is proportional to

. \271/2
t-1 > m,
i=1

’

The amplitude with bounded modulus which is
analogous to ¢ is equal to k,f,; Y%, Ty be-
ing the phase-space volume for »n particles, pro-
portional to

2437 -5)

Hence this limited amplitude is proportional to

" 2 4[1+4B3n -5)]

t-{ 2, m,.
i=1°

It is our opinion that such a dependence would
give rise to the appearance of an infinite number
of singularities near the line Rel=-%(3n -5) at ¢
= (22;m;)?, and this fact would reflect the accu-
mulation of Landau curves for ¢ =(2; m;)* and s
-+, In connection with the preceding, the hy-
pothesis of Predazzi and Regge® of the symmetry
of the [ plane with respect to the line Rel= -}

(in which case the mentioned phenomenon does
not occur) seems to us to be invalid if inelastic
processes are taken into account, i.e., with this
hypothesis one cannot see how the accumulation
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of Landau curves at a many-particle threshold
are manifested in the [ plane.

In order to explore in more detail the structure
of singularities near the line Rel= -% as t - 4pu?,
we shall make use of the energy-independent
boundary condition on the wave function which is
valid in the nonrelativistic region ¢ = 4p? in the
case of an exponentially decreasing interaction.
This boundary condition, used usually for integer
l, continues analytically into the complex [ plane.
If one represents the wave function outside the
interaction region in the form

- : (
¥, = Ju(kr) + z<pV(k)hV D(kr), (5)

where

jv(x)= (%nx)‘”JV(x), hu"’(x)= (%ﬂx)"zHV“’(x),

- 1
V—-l+§

[J, ) and HV“’(x) are Bessel and Hankel func-
tions], and designates (vy,'/¥,)1, - by X, one
has, using the relation

h W= (i/sinmy)[exp(-imv)j -7 |, (6)
v v T-v
that
¢,= -A sinmy/[1 - exp(-imv)A], (7
where
A=[j '&kR) -x j (kR)]/j_ '(kR)-x j_ (kR)].

8)

Ask-0 (v#0,21,12,+++),
A= (kR)w[xV -yT(1 - V)]/[XV +vI(1+v)], (9

and x,, does not depend on the energy. Hence it
follows that for low 2, A oscillates rapidly along
the line Rev =0 and its modulus changes rapidly
when v deviates from this line. Therefore, ¢,
must have an infinite number of poles.
We consider in more detail the region v < 1.

If the coefficient of (kR)zV is expanded as a power
series in v, then the linear term may be elimi-
nated by means of redefining R. Then

A=x" 1+, (10)

where x =ka and «a is the redefined interaction ra-
dius. To eliminate exp(-imv) in the denominator
of (7), we consider t<4u? Then the equation for
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determining the position of the poles has the form

-2v 2 y2
:1+yu2. x=aKk, K=3(4u" -t
-vT =y +2imm, n=0,%1,-++, T=Inx% (11)
v =(2imn/7) + 470>y /73 (12)
n

Thus we have obtained an infinite number of com-
plex conjugate poles. As 7+ -, poles are situ-
ated to the left of the line Rev =0 for y>0. It is
to be noted that in nonrelativistic quantum me-
chanics, y = 0 for an arbitrary potential, because
for Rev >0 and ¢<4u® complex poles do not ex-
ist.” The case y =0 corresponds to the potential
increasing at small distances faster than 1/72.
We shall suppose in the following that y > 0.
Formulas (7) and (12) make it possible to calcu-
late the asymptotic behavior of A,(s. ¢) for small
{ -4u” and large s. A,(s,t) contains the contribu-
tion from a finite number of the poles, situated
to the right of the line Rev=0. We are not inter-
ested in this contribution. Designating the con-
tribution from the poles to the left of the line
Rev =0 by A(s.t), we obtain

~ 4
Ai(s.0 = 211<<g’)

where & =1nsa®.

We made use in (13) of the approximate expres-
sion for ¢, applicable for v<<1. The reason is
that., as will be seen in the following, only low v
are of importance in the integral (13) for large &.

After closing the integration contour on the left
and computing the residues, we obtain. neglecting
terms of order 1/7%(7£)Y? compared to unity,

~ 4“
Al = —411 <7\*)

dv exp(&v)v(l +yv )

(13)
i 1 -exp(Tv)(1+y1?)’

Z ex < = yg)nstnnf_

n=1
(14)
We consider now the case ¢£> 7% Then only
one term is of importance in the sum (14), and
; 4p?\"1 : :
A, =473 exp( —-Y5)sin27 °.
1 (s) T—zxp<_r )sm nT (15)

Thus we have obtained an oscillating behavior
for A;. The consequences of this result have
been discussed already in the beginning.

In the course of this discussion we have noted
that the interaction corresponding to repulsion
in nonrelativistic quantum mechanics contradicts
analyticity and unitarity. At the same time an

arbitrarily small attraction conforms to unitarity
and analyticity, because, as can be shown easily,
for arbitrarily small attraction, there is a pole
on the real axis at I>-1,¢=4u2%.° As the interac-
tion strength decreases, the position of the pole
at {=4u® tends to =-4. It is of interest to note
also that the complex-conjugate poles discussed
above go to -« in the [ plane, when the interaction
strength tends to zero. One can be convinced of
this by calculating v, which occurs in (10), by
making use of perturbation theory which is valid
for finding x for weak potentials. Then one can
show easily that y =1/g*, where g*= -furdr. Hence
it follows that the asymptotic expression for the
scattering amplitude (15) has a power -series ex-
pansion in g? identically equal to zero.

Up to now we have discussed complex-conjugate
poles for Rev<0. The question arises how For-
mula (7) contains the possibility of the presence
of poles on the real axis, if A=ozu(4u2 -HV is
equal to zero for Rev >0 and to infinity for Rev
<0. It is obvious that the position of such poles
@y for t=4u? coincides with that of a,, for v>0
and with the zeros of @, for vy<0. Starting from
these reasons one can easily obtain the formula
for vy (f) near t=4u® This being done for v, (4u?)
=B, >0, we obtain a result coinciding with that

obtained in (4). In the case of poles with v <0,
setting

a = (l/pn)(v -Bn)(l/sinﬁn),

and substituting it into (7),
that ¢ ,(¢) has a pole at

one can show easily

2 B,
= 4, -
un(t) B, +p, (4 t) " /sinmy, (16)
and that the residue at this pole is equal to p,,.

If v is equal to an integer so that A =(-1)Y, then
substituting Neumann functions for the j, and
taking into account their behavior at small k,
one obtains

-1

2 - 2 2
v =8 (0 +p “Han® - Prinfap® g jap®)

(am

Comparing (16) and (17) with reference 5, we
see that the way by which the pole moves away
from the real axis is determined by the modulus
of v only. Note that according to (17) the pole
can move away from the real axis at v =0 only
if @ =0, but in this case the residue vanishes.

To conclude, we should like to thank Ya. Ya.
Azimov, V. B. Berestetsky, V. M. Shekhter,
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and I. M. Shmushkevich for useful discussions.

IWe use this term, “scattering amplitude,” for the
sake of brevity. The whole following consideration is
true for any invariant amplitude for the transition of
two particles into two particles.
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ERRATUM

DEPARTURES FROM ONE-PION EXCHANGE IN
1.25-BeV 77-p INTERACTIONS. E. Pickup, D. K.
Robinson, and E. O. Salant [Phys. Rev. Letters 9,

170 (1962)].

Third paragraph, first sentence: The inequal-
ities are reversed. The ratio f/b is correctly de-

fined in Table I.

Fourth paragraph, beginning “Dependence of...”:
Second sentence should read: “Figure 2 shows,
for events of low A? inside the p peak, the distri-
bution of events for forward a and for backward
a.” Fourth sentence should read: “For events
inside the p peak with A*<0.30 (BeV/c)?, the
scattering asymmetry parameter (F -B)/(F +B)
(where F =number of pions scattered in the range
0 <cos6<1, B=number of pions scattered in the
range -1<cosf#<0) is 0.40+ 0.08 for forward «
and 0.08 £ 0.09 for backward «a.”
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