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FIG. 1. Antiferromagnetic resonance at 23.285 Gc/
sec for the applied field in a (100) plane.

Low-temperature magnetic-resonance measure-
ments on XMnF, compounds have been briefly re-
ported. ' Of these perovskite-like structures g
= Na, , K, Rb, Cs) the most novel and interesting is
RbMnF„because it is a simple cubic antiferro-
magnet. In contrast to the simple behavior of
RbMnF,

„

the other compounds of this series de-
part from cubic structure' and display weak fer-
romagnetism resulting from canting of the sub-
lattice magnetizations. '

Cubic RbMnF, is characterized by a strong ex-
change interaction (T„=54.5') and small anisot-
ropy; it is therefore an extremely attractive ma-
terial for the study of antiferromagnetism. In
this note we shall report theory and observation
of antiferromagnetic resonance.

In Fig. 1 is shown the field for antiferromag-
netic resonance as a function of angle for the ap-
plied field in a {100)plane and a microwave fre-

fluency of 23.285 kMc/sec. The fourfold symmetry
indicates that the sublattice magnetizations are
pulled away from the easy axis by the external
field, since otherwise twofold symmetry would
be observed even for cubic anisotropy. This is
in agreement with static susceptibility measure-
ments made by the force-balance method in which
we found the susceptibility to be isotropic for
fields above 5 kOe. The appearance of an anti-
ferromagnetic resonance at fields greater than
e/y, the field for paramagnetic resonance, also
indicates the presence of spin flopping. This can
be seen from the resonance conditions given by
Nagamiya, Yosida, and Kubo' for the case of a
flopped uniaxial antiferromagnet with the applied
field parallel to the anisotropy axis. In the un-
iaxial case the spin axis lies along an extremal
of anisotropy energy, and the resonance condi-
tion is H =[(o./y)'+2H&H&]"'.

The appearance of the minimum resonance
field in the (110) direction, and the supplemen-
tary observation of an isotropic resonance when
the applied field is in the {111)plane. indicate
that the (111}direction is the easy axis. The
resonance excited when the applied field is in
the {111)plane is given by the usual resonance
condition for the applied field perpendicular to
the anisotropy axis, H = [(v/y)' -2HFHp]~'. We
thus consider an anisotropy energy of the form
Fg =K(n, '+ o!,'+ o'. ,') for each sublattice. where
K is positive and the n's are the direction co-
sines of the magnetization with respect to the
crystalline axes. When the spins are near an
easy direction, the anisotropy may be related
to an effective field in the (111) direction given
by H/t = 8K/3gpBS. where K is the anisotropy
energy per ion.

For an applied field greater than H~ in an ar-
bitrary direction, the spin axis lies in the plane
perpendicular to the field, with the sublattice
magnetization tipped into the direction of the
field by a small angle, )t =H0/2HE, and the posi-
tion of the spin axis in the plane located at the
minimum of anisotropy energy within the plane.
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FIG. 2. Illustration of the spin configuration for the applied field in a (110)
plane ~shen the field is greater than the critical fie.ld, (2tlEB~) = 2450 Oe.

The situation is illustrated in Fig. 2 for the case
of the applied field in the (110)plane.

To complete the basis of the resonance theory
we must include the hyperfine anisotropy field.
This field, arising from the polarization of Mn"
nuclear moments, gives rise to the strong tem-
perature dependence of the antiferromagnetic-
resonance field at low temperatures which was
first observed in KMnF, .' It is introduced in the
theory as an effective field, H~, in the direction
of the sublattice magnetization as determined
above. The value of the hyperfine anisotropy
field, HIII = (A/gpB)(Iz) may be obtained from
precise electron paramagnetic resonance meas-
urements" of A" in KMgF, :Mn'+ corrected for
volume differences between the diamagnetic host
and the concentrated RbMnF, lattice. The result
is H~ = 9.43/T Oe.

The equation of motion for each sublattice may

be written

(1/I )d M /dt = M x (H + H + H ) + T,

where T is the torque arising from the anisotropy,
and is given by

T = sing BE /B6 + cot8 cosp BE /Bpx m A m m m A m'

T = -cosf BE /B8 + cot8 sing BE /BI|I
y m A m m m A

BE /B Il-I
z A m'

where 8~ and P~ are the polar angles of the sub-
lattice magnetizations. We transform to new co-
ordinates x', y', z' and x",y", z", where z' and z"
are along the equilibrium directions of My and M2,
the sub1.attice magnetizations, and x' and x" are
perpendicular to H, . The equations of motion be-
come

1d
ydt x'

2

0 a 0 b

0 c 0

0 5 0 a
+x'

M2

0 -a 0

where a =(H@+8~), h =( HE +H0'/2HF), e-= H. E, -
and 5T, and 5T, are the changes in torque for
small displacements of M, and M, from their
"flopped" equilibrium positions.

%e now calculate the resonance frequency and

obtain

(Iu/y) =H + 3B(8, g)H H + 2H H

where 8 and Q are the polar and azimuthal angles
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of H, . The angular dependence is given by

B(8, P) = 3 ( n, 'I, ' + n, '&,' + n, 'I,') —(n,' + n, ' + n, '),

where az is a direction cosine of the equilibrium
spin axis and l~ is a direction cosine of H, , For
the applied field in the (001) plane, the angle be-
tween the sublattice magnetization and the [001]
axis is given by 8~ =cos '(3+ cos4$)/(7+ cos4$),
and the angular function in the resonance equa-
tion is

B(,'7I, It) -= -4cos4$/(7+cos4$).
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For the applied field in the (011) plane, the ori-
entation of the magnetization is shown in Fig. 2.
The configuration of lowest energy is shown by
the solid line and the dashed lines are the exten-
sions of these solutions beyond their stable range.
(When the field is perpendicular to the fill) plane,
the spine are free to rotate in the plane. ) The an-
gular function in the resonance equation is
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B(8, 4It) = -1+ -", cos'8 -Gcos'8,

for 8 between [001] and [ill], and

B(8, —,'w) = (2 —sin'8)(3 sin'8 -1)/(2+ sin'8)

for 8 between [ill] and [011]. In Fig. 3 we show
the excellent agreement between theory and ex-
periment. For the applied field along [ill], a
single resonance is observed. However, for a
few degrees to either side, a second resonance
is observed. It can be shown that the slight mis-
alignment out of the (110)can permit the forma-
tion of metastab1. e domains having spin configura-
tion with the resonance frequencies calculated
for the extensions shown in Fig. 2. The intensity
of the second resonance falls off rapidly with an-
gle away from [ill] as the formation of these do-
mains becomes more energetically unfavorable.

Using the calculated value of H~ we obtain Hg
= (890+ 20) kOe and HA = (4.47+ 0.04) Oe by a fit
to the experimental data. The experimental value
of HF is influenced by systematic error, while the
smaller error assigned to H~ arises from the un-
certainty in (S). Both the sign and the magnitude
of the anisotropy suggest that the principal mech-
anism is cubic crystal field splitting. The rela-
tion between K and a, the crystal field parameter,
is' K = S(S —-', ) (S - 1)(S —

z) (a/G) = 5/4a, and we ob-

FIG. 3. Antiferromagnetic resonance at 23.285 Gc/
sec for the applied field in a (110) plane.

tain K =3.92 x10 ' cm ', while the measurements
of Ogawa' give values of a -4 x10 ' cm '. The
zero-point dipolar anisotropy has the opposite
sign and may be calculated from Pearson's' for-
mula to be -0.25x10~ cm '
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