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It has been only recently that a renewed inter-
est in the Faraday effect occurring with infrared
radiation at wavelengths corresponding to the en-
ergy gap has become evident, ' and as a conse-
quence a meager amount of empirical data exists.
Hartmann and Kleman-' reported on measurements
of the room-temperature Verdet coefficients for
an intrinsic germanium sample near the edge.
The results indicated that both indirect and direct
transitions contributed to the dispersion. Intrin-
sic silicon is an excellent material. for studying
the effects of indirect transitions on the Faraday
rotation, because the direct transitions require
such a high photon energy that they should have
little or no effect on the dispersion at wavelengths
beyond the edge. Hence one should see Faraday
rotation phenomena associated only with the in-

direct transitions when the sample is irradiated
with polarized radiation of wavelengths approach-
ing those corresponding to the intrinsic edge.

We have observed Faraday rotation in intrinsic
silicon at infrared wavelengths from 1.05 microns
to 5 microns at 297 K and at 77'K. The experi-
mental technique is a conventional one and is a
modification of that used by Austin in studying
Bi,Te, .' The Verdet coefficients of an n-type
silicon sample (30-0 cm) at a magnetic-field
strength of 19.1 kilogauss is shown in Fig. 1.
We propose that the dispersion effects responsi-
ble for these curves are associated only with the
mechanism corresponding to indirect transitions.

Lax and Nishina' have developed an expression
for the Faraday rotation corresponding to indirect
transitions based upon a quantum mechanical
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FIG. 1. Verdet coefficients for n-tate silicon at 77'K and 297'K. Magnetic-field strength 19.1 kG.
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(la)

This expression holds for weak magnetic fields
and for frequencies well below that corresponding
to the energy gap e&. K is a coefficient, which
should be independent of co and T, and 8 is the
magnetic induction. For (d much less than ~g,
this expression becomes the following:

9.= -KBx(1 +x'/6).
z

(lb)

Thus one can see that this expression predicts
that the Faraday rotation will approach zero as
~ ' at very long wavelengths. The data of Fig. 1
replotted in Fig. 2, however, indicate that the
Faraday rotation approaches zero very nearly
as X '. This indicates that instead of the Fara-
day rotation associated with indirect transitions
being described by Eq. (1b), it would be of the
form

8.=K B((u /(u )(1+ax ),i 1 g
(1c)

where the exponent p is very close to two.
Assuming (1b) or (1c) and for small values of

x =&a/&u&, the temperature variation of the Fara. —

treatment of virtual interband transitions leading
to magneto-optical absorption effects. Their re-
sult for the Faraday rotation gi is given by the
following expr ession:

8, = (-KB/x)(ln(1 -x') +x ln[(1+x)/(1 -x)]],

day rotation can be written in the following form:

8 'd8/dT = -(1+ —3x')(u 'd~ /dT.
g

(1d)

8 = (d (d CO /2nc(&d —(d )
p c 0

and the refractive index n by

n'=1+(u '/((u '-(u'),
p 0

(2a)

(2b)

where ~~ is the plasma frequency and ~c is the
cyclotron frequency (&uc = eB/m*). Expression
(2a) can also be written as

8 = (v /2c) Xdn/di
c (2c)

Equation (ld) indicates that, for wavelengths
much longer than that corresponding to the in-
direct gap, the Faraday rotation should vary
with temperature as the function, &u& 'd&u&/dT

with a correction term which vanishes at very
long wavelengths. McLean and co-workers' have
determined the value of w& 'd&u&/dT over the
range 77'K-300 K to be approximately -1.6
x10 '/ K. Using this value in (ld), we get a
value of 8 'd8/dT at 1.5 microns of 1.92xlo /
K compared with a, measured value of (2.1 a 0.2)

x 10 '/'K.
Equation (lc) is very similar to the form that

one gets if one considers a collection of clas-
sical oscillators having a resonant frequency
of ~„. For the very special case' of the single
bound oscillators, Faraday rotation is given by
the following expression:

5,0j

9 = [(n' —1)'/2nc](u ~'/(u '.
c (2d)
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FIG. 2. The Verdet coefficient as a function of &

for n-type silicon. Data taken at 297 K.
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An expression such as (2d) describes the curve
in Fig. 2 very well over a wide range of wave-
lengths, because n is not varying rapidly with X.
lf one considers Eqs. (2a) and (2b), one can obtain

9 'd8/dT =[(3n'+1)/(n' -1)]n 'dn/dT. (2e)

Lukes' has measured the temperature variation
of the refractive index of silicon. and reports it
to be (5.6+ 0.2) x 10 '/"K at 1.5 microns. Using
this value and a, value of n =3.5 in (2e), we get
8 'd8/dT = (1.9+ 0.1) x 10 /=K.

The temperature dependence of the Faraday ro-
tation associated with indirect transitions is evi-
dently closely related to the temperature depend-
ence of the energy gap and the refractive index in
agreement with Moss's quasi-empirical law n'w
= constant.

The concept of single classical oscillator is not
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adequate in itself to account for the interband Far-
aday rotation, because the contribution to the ro-
tation of the virtual transitions must be summed
over the bands. A more detailed quantum me-
chanical treatment of dispersion gives results
very similar to Eq. (2b).' This close similarity
explains why Etl. (2b) is in such good agreement
with experimental observations on dielectrics.
Korovin' used the classic concepts when calculat-
ing the index of refraction. using the one-electron
approximation. The electron from the valence
band is represented as a classical oscillator,
whose natural frequency u, is equal to the differ-
ence between the energies in the valence band
and the conduction band.

The complex refractive index N is given in this
case by

)V = l + (sr(e-/Bm'h) Q (P(k) ) '/(~, ' —~'+g~'(u) ~„

(3 a.)

where p(k) is the matrix element of momentum
for transitions of an electron with a given wave
vector A from the valence band to the conduction
band, ~ is the frequency of the radiation, and ~'
describes the damping of the oscillator. which
corresponds to the finite lifetime of the virtual
states of electrons in the conduction band.

It is very interesting that the experimental re-
sults of the indirect rotation follow very closely
the expressions (2a) to (2e) which are derived
from the single classical oscillator. This leads
to the suggestion that the quantum mechanical
treatment of the Faraday rotation should result
in a similar frequency dependence for ~& ~&,
but with constants determined by the distributed
transition energies. "

It may very well be that the interba, nd Fa,raday-
rotation theory must also take into account addi-
tional effects such as the Coulomb interaction be-
tween hole-electron pairs (excitons). For the case
of direct transitions, Suffczynski has suggested,

in the case of germanium, the possibility that ex-
citons can contribute, to a significant extent, to
the Faraday rotation at frequencies less than that
of the direct gap. "

The authors wish to thank V. A. Patton for as-
sistance in performing measurements.
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0. =- (Dy.H/2c)I(~ /a }ln[( ' /(( —( ' )]
2 g2 g2

~ (~ ./~) in[((' . —c )/((', +~)) + lj,
g2 g2 g2

where D is a constant, involving matrix elements, elec-
tron charges, and masses, and

u'
g2 a I»

(8~& is the gap energy, h~p), the phonon energy, and 1
and 2 designate the valence and conduction bands, re-
spectively. } The above expression gives, for ~/~& & 1,
an expression of the form (1c) ~with P = 2, m = 2, and a

We thank B. Lax for supplying this information.
M. Suffczynski, Proc. Phys. Soc. (London) 77, 1042

(1961}.

205


