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squared distributions of the "& and KE systems by
means of the X test. The probabilities that the ob-
served distributions originate from their correspond-
ing phase-space distributions are &0. 0001 for the =~
system and &0. 01 for the KR system. The large X2

values arise mainly from the single peaks appearing
in each curve.

4For both the "7I and AK systems the mass resolu-
tion is about +3 MeV. This resolution has been esti-
mated from the distribution of A masses found when
the pion and proton from the A decay have been fitted
to the production vertex.

~No subtraction of background has been made in the
derivation of these ratios.
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The p-p data from 3 to 30 GeV/c seem to fit
the assumption of a single vacuum Regge pole
trajectory' (which we label P) and have been anal-
yzed in these terms. ' ' However, two more tra-
jectories must in fact be important in this region:
the w trajectory to give the big difference be-
tween P-P and P-jt) scattering, and a second vac-
uum trajectory (lablled P'} to keep the P-P total
cross section roughly constant. ' (Igi' has already
established the presence of P'from m-N disper-
sion relations. ) Other known trajectories seem
less important; the p trajectory gives differences
between P-P and n-P scattering, but these are
small. '

It is important to know if these extra poles
spoil the one-pole analysis. We present here a
realistic model of P-P and P-P scattering, using
the P, P', and a trajectories, which fits many
aspects of the data. This model suggests that
one-pole analyses need certain corrections but
remain qualitatively valid.

We first assume the scattering is dominated
by the spin-averaged amplitude; this is reason-
able, at least in the diffraction peak, and leaves
a scalar problem. (A complete spinor treatment~|
introduces some modifications to be discussed
later. } The amplitude contains terms of the
usual form

T = P(t)P (cosB )[I a exp(-iso. )]/sinvo. ,

where o.(t) is the corresponding trajectory, t is
the invariant momentum transfer squared, P~
is the Legendre function, 6t is the scattering
angle in the crossed channel, and P(t) is the resi
due function. The signature ~ is + for P and P',
and - for g. The P-p andP-P amplitudes have
the forms

(2)
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in an obvious notation.
From P(t) we factor out the statistical weight

(2n+1), a factor a to remove' "ghost" singulari-
ties at @=0 for P and P', and the threshold de-
pendence'~" (t 4m') -/(4m')~ where m is the
nucleon mass; any remaining t dependence is
ignored. The choice of units to make the thresh-
old term dimensionless is not trivial, for it af-
fects the t dependence. We note that the factor
(2++ 1) also serves to remove a singularity in
P at n= =,'. The cu term has no ghost at +=0,
but we keep the factor n for symmetry; it also
helps to fit the data, as explained later.

We now use the asymptotic form of P, write
cosBt= (2s-4m'+ t)/(t-4m ) where s is the in-
variant energy squared, and neglect t compared
to s. Each pole term becomes

(2 1 2o. I'( o'+) 1~ exp(-iva), ts-2m'
T 82 +-12

where B is a constant and I is the gamma func-
tion. Note that (s-2mm)/2m =El, the total proton
laboratory energy.

We assume the P trajectory is a straight line
between aP=1 at t=0 and o.P=O at t=-1 (GeV/c)',
as suggested by the one-pole analysis; we re-
strict ourselves to this range of t. Since the P'
and ~ contributions to the P-P total cross section
are to cancel, their trajectories and residues
are equal at t= 0; we continue this symmetry for
t (0 by choosing these trajectories to coincide
on a straight line parallel to the P trajectory.
The intercept at t= 0 is taken to be 0.5 from Igi's
work'; this value also seems consistent with the
variations of total cross sections in the N-N,
N-N, ~-N, K-N, and K-N systems. The nu-
merical coefficients are chosen in the ratio
B~..B~, B = 0.45:1:1for an approximate fit to
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the P-P and P-P total cross sections. ' The
model is now completely specified.

For a comparison with experiment, we write
the differential cross section as

do/dt= (do/dt) F(s, t)(E /m)
opt

l.o

~\
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FIG. 1. Predictions of the three-pole model for
various fixed values of s: the p —p and p —p cases
have the same asymptotic limit. Experimental
results, 2 from qsing the one-pole formula on data
from 3 —30 GeV/c, are also shown.

where the subscript "opt" indicates the minimum
forward cross section found from the optical
theorem. If only the I' trajectory contributes,
F is a function of t alone; this is then essentially
the formula used to fit P-P data in reference 3.
The predictions of our model are shown in Fig.
1; F(s„ t) is plotted against t for various fixed
values of s, and is compared with F(t) deduced
from P -P data between 3 and 30 GeV using the
one-pole formula. ' '

We see that the model agrees qualitatively with
p-p data, by giving the initial fall of I' as Iti in-
creases. It does not give the subsequent flatten-
ing or rise, indicated by a one-pole analysis' '
over the whole range 3-30 GeV/c and shown in
Fig. 1; however, if the range is restricted to
9-30 GeV/c, the one-pole analysis no longer
shows the above marked effect." The model al-
so agrees qualitatively with P-P data, "which

show a much narrower diffraction peak than in
the P-P case. At EI =3 GeV and t= -0.5 (GeV/c)'
the P-p peak has fallen by an extra factor 5: our
model gives a factor 3 (though it is not really de-
signed for such low energies). We notice a conse-
quence of the model, that as s increases, the
shape of F(s, f) shrinks for the P-P case and ex-
pands for the fTI-p case: both reach the same
asymptotic limit, given by the P term alone.

Two arbitrary features of the model can now be
discussed. First it is clear that a different choice
of units for the threshold dependence of P(t)—
which in turn determines the units for s in Eq.
(3)—would lead to different shapes for F(s, t).
The rough agreement with experiment suggests
that our choice, originally made for convenience,
may have a deeper significance. Secondly, we
can see how the factor n gratuitously included in
the ~ term helps to fit experiment. For since
the cross section for P-0 is bigger than that for
P-P at t=0, and since it falls off much faster for
f & 0, the two curves must intersect somewhere;
at this point the & term must vanish, in the three-
pole model. The extra factor n, insures this
vanishing, at t= -0.5 (GeV/c)' where a =0 with
our choice of ~ trajectory.

Now consider the plot of ln[(dv/dt)/(do/dt) tj
against ln(EI /n", ) at fixed t. The one-pole as-
sumption gives a straight line. The one-pole
analysis is made by fitting a straight line to this
plot of the data at each value of f; a(f) and F(t)
are found from the slope and the intercept at
ln(EI/wl)=0. Our model, however, gives a
curved line, concave upward for the P-P case, "
suggesting that the one-pole analysis tends to
overestimate both I (t) and (1-a) for the P tra-
jectory.

To illustrate this point, we plot the morsel
predictions for the P -9 case between 6 and 25
GeV/c, with nominal 10 /q uncertainty, and make
straight-line fits to these synthetic data, as
shown in Fig. 2. The curvature is scarcely vis-
ible in this momentum range and might escape
detection even with measurements to +1 /q (we
include some 3-GeV/c points to show the curva-
ture is there, but these are not considered in
the fit). Nevertheless, the curvature between 25
GeV/c and ~ is enough to make appreciable cor-
rections to n(t) as shown in Table I. The de-
termination of F(f) involves a large extrapola-
tion and the corrections here are consequently
bigger.

A complete spinor treatment for N-X scatter-
ing is formulated by Gell-Mann. ~ With a one-
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tent shown in Table I. On the other hand, the fit
will appear deceptively good.

(iii) Since the curvature in Fig. 2 is so hard to
see, the prospects for separating different pole
contributions in the region t& 0 are poor, at least
with presently accessible energies.
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~ This curvature is another expression of the shrink-
ing of the I (s, t) pattern. For the p —p case the curva-
ture has the opposite sign, and F(s, t) expands.
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Several theories' "of nonleptonic hyperon de-
cay have been proposed, but only one, due to Pais, '
is consistent with all of the observed relations" "

spin T is split into a doublet spin I and a K-spin
K,

T =I+K,
Q+-A -0,

A ™0' (2)
and the baryons are grouped into four I =

& dou-
blets:

A --Q
A' (3)

between the asymmetry parameters in Z, A, and
:" decay. Pais uses the baryon doublet approxi-
mation" and Relation (1) to predict (2). Instead
of (3), however, he obtains the weaker prediction:

I~ I =1~
A

Here we propose another theory in which (1), (2),
and (3) are derived from time-reversal invari-
ance, the AT = z rule, ~ and three doublet sym-
metries. Since the electromagnetic interaction
satisfies two of these symmetries, we are able
to make predictions about the weak electromag-
netic decays Z ~p+y and " ~Z +y.

In the doublet approximation, ' "the isotopic

Y =2-v (Ao Zo) Zo 2-v (Ao+Z

N, and N, form a K =
& doublet:

with Kz =+—,', -~, respectively, and N, and N, have
zero K spin. The assignments for m and K mesons
are (I=1,K=O) and (I=O, K= —,'), respectively. To
supplement this scheme, we introduce a hyper-
charge spin U, with z component

U = 2(B+S), (8)
z

and observe that N, and N4 form a U = —,
' doublet


