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squared distributions of the Zr and KK systems by
means of the x® test. The probabilities that the ob-
served distributions originate from their correspond-
ing phase-space distributions are <0.0001 for the =n
system and <0.01 for the KK system. The large x?2
values arise mainly from the single peaks appearing
in each curve.

4For both the En and KK systems the mass resolu-
tion is about +3 MeV. This resolution has been esti-
mated from the distribution of A masses found when
the pion and proton from the A decay have been fitted
to the production vertex.

5No subtraction of background has been made in the
derivation of these ratios.
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The p-p data from 3 to 30 GeV/c seem to fit
the assumption of a single vacuum Regge pole
trajectory' (which we label P) and have been anal-
yzed in these terms.?2™® However, two more tra-
jectories must in fact be important in this region:
the w trajectory to give the big difference be-
tween p-p and p-p scattering, and a second vac-
uum trajectory (lablled P’) to keep the p-p total
cross section roughly constant.® (Igi” has already
established the presence of P’ from n-N disper-
sion relations.) Other known trajectories seem
less important; the p trajectory gives differences
between p-p and n-p scattering, but these are
small.?

It is important to know if these extra poles
spoil the one-pole analysis. We present here a
realistic model of p-p and p-p scattering, using
the P, P’, and w trajectories, which fits many
aspects of the data. This model suggests that
one-pole analyses need certain corrections but
remain qualitatively valid.

We first assume the scattering is dominated
by the spin-averaged amplitude; this is reason-
able, at least in the diffraction peak, and leaves
a scalar problem. (A complete spinor treatment®®
introduces some modifications to be discussed
later.) The amplitude contains terms of the
usual form

T= B(t)Pa(coset)[l + exp(-ina)]/sinma, 1)

where a(f) is the corresponding trajectory, ¢ is
the invariant momentum transfer squared, P,
is the Legendre function, ©; is the scattering
angle in the crossed channel, and B(?) is the resi-
due function. The signature + is + for P and P’,
and - for w. The p-p and p-p amplitudes have
the forms

b-p

T =T _+T_+T
~ P " p 2
5ep w 2)

in an obvious notation.

From B(f) we factor out the statistical weight
(2a+1), a factor a to remove® “ghost” singulari-
ties at @ =0 for P and P’, and the threshold de-
pendence®1® (t- 4m?)%/(4m?)® where m is the
nucleon mass; any remaining ¢ dependence is
ignored. The choice of units to make the thresh-
old term dimensionless is not trivial, for it af-
fects the ¢ dependence. We note that the factor
(2a +1) also serves to remove a singularity in
P, at a=-3. The w term has no ghost at @ =0,
but we keep the factor o for symmetry; it also
helps to fit the data, as explained later.

We now use the asymptotic form of P, write
cosO;= (2s-4m?+1)/(t- 4m®) where s is the in-
variant energy squared, and neglect { compared
to s. Each pole term becomes

o
T=Ba(2a+1)2% Ll@*z) 1xexp(-ina) (s- zmz>

F(a+1) sinmo \ 2m?

@)

where B is a constant and I' is the gamma func-
tion. Note that (s-2m?)/2m=E [, the total proton
laboratory energy.

We assume the P trajectory is a straight line
between ap=1 at =0 and ap=0 at = -1 (GeV/c)?,
as suggested by the one-pole analysis; we re-
strict ourselves to this range of {£. Since the P’
and w contributions to the p-p total cross section
are to cancel, their trajectories and residues
are equal at £=0; we continue this symmetry for
t <0 by choosing these trajectories to coincide
on a straight line parallel to the P trajectory.
The intercept at =0 is taken to be 0.5 from Igi’s
work’; this value also seems consistent with the
variations of total cross sections in the N-N,
N-N, 71-N, K-N, and K-N systems. The nu-
merical coefficients are chosen in the ratio
Bp:Bp,:Bw =0.45:1:1 for an approximate fit to
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the p-p and p-p total cross sections.2~® The
model is now completely specified.

For a comparison with experiment, we write
the differential cross section as

2aP(t)-2 @)

do/dt= (do/dt)optF(s, t)(EL/m)
where the subscript “opt” indicates the minimum
forward cross section found from the optical
theorem. If only the P trajectory contributes,
F is a function of ¢ alone; this is then essentially
the formula used to fit p-p data in reference 3.
The predictions of our model are shown in Fig.
1; F(s,t) is plotted against ¢ for various fixed
values of s, and is compared with F () deduced
from p-p data between 3 and 30 GeV using the
one-pole formula.2~5

We see that the model agrees qualitatively with
p-p data, by giving the initial fall of F as [¢| in-
creases. It does not give the subsequent flatten-
ing or rise, indicated by a one-pole analysis?~®
over the whole range 3-30 GeV/c and shown in
Fig. 1; however, if the range is restricted to
9-30 GeV/c, the one-pole analysis no longer
shows the above marked effect.!! The model al-
S0 agrees qualitatively with p-p data,'? which
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FIG. 1. Predictions of the three-pole model for
various fixed values of s: the p-p and p - cases
have the same asymptotic limit. ' Experimental”
results,?™® from using the one-pole formula on data
from 3-30 GeV/c, are also shown.
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show a much narrower diffraction peak than in

the p-p case. At E; =3 GeV and t=-0.5 (GeV/c)?
the p-p peak has fallen by an extra factor 5: our
model gives a factor 3 (though it is not really de-
signed for such low energies). We notice a conse-
quence of the model, that as s increases, the
shape of F(s,t) shrinks for the p-p case and ex-
pands for the p-p case: both reach the same
asymptotic limit, given by the £ term alone.

Two arbitrary features of the model can now be
discussed. First it is clear that a different choice
of units for the threshold dependence of B(t)—
which in turn determines the units for s in Eq.
(3) —would lead to different shapes for F(s, t).
The rough agreement with experiment suggests
that our choice, originally made for convenience,
may have a deeper significance. Secondly, we
can see how the factor « gratuitously included in
the w term helps to fit experiment. For since
the cross section for p-p is bigger than that for
p-p at t=0, and since it falls off much faster for
t<0, the two curves must intersect somewhere;
at this point the w term must vanish, in the three-
pole model. The extra factor @, insures this
vanishing, at t=-0.5 (GeV/c)? where o =0 with
our choice of w trajectory.

Now consider the plot of 1n[(do/dt)/(do/dt)opt]
against In(E ; /m) at fixed ¢. The one-pole as-
sumption gives a straight line. The one-pole
analysis is made by fitting a straight line to this
plot of the data at each value of #; «(t) and F(¢f)
are found from the slope and the intercept at
In(E; /m)=0. Our model, however, gives a
curved line, concave upward for the p-p case,'s
suggesting that the one-pole analysis tends to
overestimate both F (f) and (1-«) for the P tra-
jectory.

To illustrate this point, we plot the model
predictions for the p-p case between 6and 25
GeV/c, with nominal 10% uncertainty, and make
straight-line fits to these synthetic data, as
shown in Fig. 2. The curvature is scarcely vis-
ible in this momentum range and might escape
detection even with measurements to +1 % (we
include some 3-GeV/c points to show the curva-
ture is there, but these are not considered in
the fit). Nevertheless, the curvature between 25
GeV/c and = is enough to make appreciable cor-
rections to a(¢) as shown in Table I. The de-
termination of F(#) involves a large extrapola-
tion and the corrections here are consequently
bigger.

A complete spinor treatment for N-N scatter-
ing is formulated by Gell-Mann.?® With a one-
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FIG. 2. One-pole fit to the three-pole model, be-
tween 6 and 25 GeV/c, for p -t case. Plot of
lnl(da/dt)/(da/dt)opt] against In(Ef /m) at fixed t is
fitted by straight lines. Points at 3 GeV/c are shown,
but not used in the fit.

pole model there are now two independent resi-
due functions 7, and 7, (occurring quadratically)
in place of one. It seems impossible to determine
both independently from unpolarized differential
cross-section measurements alone. However,
only 7, affects the total cross section. If we
make assumptions about 1, equivalent to those
we made about 3 (), and put 1,=0, the cross
section differs from the corresponding scalar
model by a factor [1-¢/4m?P, essentially because
of spin-dependent terms. If instead we put 7,=cn,
where ¢ is a constant, the additional ¢ dependence
asymptotically has the form (1-11-c¢ |2t/4m?)2,
Unless ¢ is much larger than 1, the one-pole
curve in Fig. 1 is little altered.

With a three=-pole spinor model there is much
arbitrariness. However, if the three-pole terms

Table I. Results of the one-pole analysis, applied
to our three-pole model. Comparison of true and ap-
parent values of o and F.

-t ag(t) F(t)

(GeV/c)?  True Apparent True Apparent
0.1 0.9 0.83 0.68 1.2
0.3 0.7 0.61 0,34 0.74
0.5 0.5 0.40 0.18 0.47
0.7 0.3 0.18 0.10 0.33
0.9 0.1 -0.04 0.06 0.23

differ qualitatively only in signature and we choose
the residue functions suitably, we can recover

the results of the scalar model simply multiplied
by a t-dependent factor as above. Thus a scalar
model is not unreasonable for |t|«< 4(GeV/c)2.

This provides a limit on the model’s range of
validity in £. The limits of validity in energy are
hard to estimate. However, we are reluctant to
take the model seriously below, say, E; =6 GeV,
if only because the forward p-p amplitude de-
velops a large real part in this region, contrary
to experiment. At 10 GeV, however, the forward
cross section is only 16 % above the “optical”
value, which agrees with the experimental®! fig-
ure, 20+ 20%. In our model the p-p forward
amplitude is always purely imaginary.

To summarize, our model uses the following
acsumptions:

(i) The problem is essentially scalar.

(ii) The P, P’, and w trajectories dominate.

(iii) The P’ and w terms are symmetrical, so
that in the p-p amplitude their imaginary parts
cancel, not only at £=0, but also for £<0.

(iv) The residue functions have the minimum
known ¢ dependence (apart from an extra factor
in the w term, needed for symmetry).

(v) The threshold dependence of residues in-
troduces an arbitrary scale in each pole term,
affecting the f dependence; this scale is chosen
the same for all three terms.

(vi) The common trajectory of P’ and w re-
mains parallel to the P trajectory; we take the
latter to be a straight line passing through 0 at
t=-1 (GeV/c)2.

We reach the following conclusions:

(i) The model fits qualitatively what is known
about high-energy p-p and p-p scattering in its
range of validity, ||« 4(GeV/c)2.

(ii) Fitting data in the range 6-25 GeV/c by a
one-pole formula is likely to overestimate both
[1-a(f)] and F(¢) for the P-trajectory, to the ex-
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tent shown in Table I. On the other hand, the fit
will appear deceptively good.

(iii) Since the curvature in Fig. 2 is so hard to
see, the prospects for separating different pole
contributions in the region £<0 are poor, at least
with presently accessible energies.
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Several theories'™! of nonleptonic hyperon de-
cay have been proposed, but only one, due to Pais,!
is consistent with all of the observed relations!?™4

ay=a-=0, (1)
C!Az-ao, (2)
aEz-aA, (3)

between the asymmetry parameters in £, A, and
= decay. Pais uses the baryon doublet approxi-
mation!® and Relation (1) to predict (2). Instead
of (3), however, he obtains the weaker prediction:

(4)

!aEI = laAl.
Here we propose another theory in which (1), (2),
and (3) are derived from time-reversal invari-
ance, the AT =3 rule,'®'® and three doublet sym-
metries. Since the electromagnetic interaction
satisfies two of these symmetries, we are able
to make predictions about the weak electromag-
netic decays =¥ s p+y and Z” > % +y.
In the doublet approximation,!s*5 the isotopic
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Epin T is split into a doublet spin I and a K -spin
K’

T=1+K, (5)

and the baryons are grouped into four /=4 dou-
blets:

=+t Z° =0
o) ve(30) we(E) 0o (E)

YO=2TV2(A°-50), Z0=2"W2(A04+10), (6)
N, and N, form a K =3 doublet:

N2
()

with K, =+3, -3, respectively, and N, and N, have
zero K spin. The assignments for 7 and K mesons
are (/=1,K=0) and (/=0,K =3%), respectively. To
supplement this scheme, we introduce a hyper-
charge spin _ﬁ, with z component

U_=z(B+9), (8)

and observe that N, and N, form a U =3 doublet



