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In a recent Letter, Cohen, Falicov, and Phil-
lips' have discussed tunneling of electrons
through a thin insulating layer between a normal
and a superconducting metal on the basis of an
effective Hamiltonian,

+Q ++
Pg

where B~ and Hg are exact Hamiltonians for the
normal and superconducting metals, respective-
ly, and HT is an operator which transfers elec-
trons from one to the other:

H = Q (T c *c + T *c *c ).
kq ko qo kq qadi kc

k~q, (T

Here k is a quantum number describing states in
the normal metal, q refers to states in the super-
conductor, o is the spin, and the e's are creation
and destruction operators for normal quasi-par-
ticle states in both metals. By making use of
the equations of motion, they derived an ex-
pression for the time rate of change of number
ot electrons in the superconductor (Ng) and thus
the tunneling current. They find that the ratio
of tunneling currents in superconducting and
normal states depends only on the density of
states in energy in the superconductor, as i»-
dicated by the experiments. '

We would like to discuss their derivation from
a somewhat different point of view, which we
feel brings out a little more clearly the con-
nection with the semiconductor model of a super-
conductor and also with an earlier discussion
of tunneling by the present author. ' In the semi-
conductor model, one assumes that there is a
set of normally occupied quasi-particle states
below the gap and a set of normally unoccupied

y =Q C *-V C
q -ql'

y *=u c *+v c-ql q -q& q q)'

(3a)

(3b)

where M& =1-v& ———2(1.+e&/E&); E&=
(e&'+b,2)~,

and -q indicates the time-reversal conjugate of
q. These operators do not conserve particle
number and are designed to operate on wave

states above the gap, in one-to-one corres-
pondence with those of the normal metal. At
T = 0 K, states above are all unoccupied, those
below occupied, but at a finite temperature
electrons may be thermally excited to states
above the gap, leaving holes in the normally
occupied band. Electrons may be transferred
from the normal to the superconducting metal
into unoccupied states above the gap or into
holes below the gap. Correspondingly, trans-
fer in the reverse direction occurs from oc-
cupied states above the gap or from one of the
filled states below the gap, leaving holes behind.
It is the occupied states above the gap and the
holes below which correspond to quasi-particle
excitations of the superconductor.

What the author showed in his earlier Letter
is that if there is a one-to-one correspondence
between the quasi-particle excitations in normal
and superconducting states, the only significant
factor in the tunneling current is given by the
density of states in energy. However, justifica-
tion for the one-to-one correspondence and the
definition of the quasi-particle states from
microscopic theory was not given.

The quasi-particle states in a superconductor
are usually defined by the Bogoliubov-Valatin
transformation, 4
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functions which are linear combinations of states
with different numbers of particles. However,
one can, as was done in the original paper of
Cooper, Schrieffer, and the author, discuss
states with definite particle number and define
quasi-particle operators y i

*= u c *-u c ip *,
which do conserve particle number. The op-
erator p

* adds a ground-state pair. Thus, op-
erating by y &* definitely adds an electron to
the superconductor. Similarly, the operator
y

&

= u cq&
- vqc q ~*/ removes an electron from

the superconductor, with c q* adding an electron
in -q J, and p removing a ground-state pair to
conserve particle number.

As pointed out by Cohen, Falicov, and Phillips,
in the tunneling problem one must consider the
degeneracy of states with E'q Eq~ where q is
above the Fermi surface, q' is below and q and
q' are neighboring states such that Tkq= Tkqi.
The superconducting quasi-particle energy
Fq =Eqi is the same for yq~* and yq~~*, and
the appropriately defined quasi-particle states
for the tunneling problem are linear combina-
tions of these.

If one uses particle conserving operators, one
may calculate the tunneling' current by express-
ing Hy in terms of the yq&* and then applying
the golden rule. We introduce new quasi-par-
ticle operators defined by

qo q qo q' q'O' F' (4.)

so that

q'0 q qp. q' q'0'

(5a)

c +c, =( -P$
-qL -q'l -ql q'~

Thus H& becomes

H = c *$ T
T ka qo kqk, v, q&q

(5b)

+ p (c *p$, ~-c *p$, *)Z'

k, q'&q k f -q') k $ -q') kq'

+comp. conj. (6)

~e may interpret $ * in the semiconductor mod-
el as adding an elec ron to an unoccupied state
above the gap, P*(qi~ as filling and thus destroy-
ing a hole in q'v below the gap. In both cases,
an electron is definitely added to the supercon-
ductor. The matrix elements for these quasi-

particle excitations are the same as those of
the corresponding transitions in the normal state.
Thus expression (6) for H& gives justification
for use of the semiconductor model.

We see that ( ~* is a linear combination of
two ways one may add an electron to a super-
conductor to create an excitation of energy Fq=F, Starting from the ground state, one may
add an electron to a configuration in which the
pair (qf, -q$) is unoccupied, creating an excita-
tion y *, or one may add aparticle to q') in
an unoccupied pair (q'i, -q'i) below the sea,
leaving a hole excitation in -q'$. This latter
quasi-particle excitation is defined by y I-*.

q
The excitation created by tunneling is the linear
combination, u yq&*+uqiyqI~ *. If 7'kq and Tkq~
were different, the quasi-particle operators
would be defined differently and the square of
the matrix element would be ) T~q )'uq +

~ Tkq I'Mq '.
While use of the semiconductor model is, in

general, justified, there is a significant dif-
ference. Suppose that electrons are added to
states above the gap. In a semiconductor, one
can get charge compensation only by adding a
corresponding number of holes below the gap.
In a superconductor, compensation can occur by
supercurrent flow which changes the number of
electrons in ground-state pairs. Further, in a
superconductor there is not a sharp distinction
between excitations corresponding to particles
above and holes below the gap; one type of ex-
citation gradually changes to the other as the
Fermi surface is crossed. After the energy
of the particles originally added above the sea
becomes thermalized, there will be in the super-
conductor equal numbers of excitations which
one would describe in the semiconductor model
as conduction electrons and holes. In other words,
an excitation can change by scattering alone from
one corresponding to a particle above to one
corresponding to a hole below the gap, with no
sharp change in character of the excitation as
the Fermi surface is crossed. Of course, the
total number of quasi-particle excitations can be
changed only by a recombination process of the
type discussed by Schrieffer and Ginsberg. '

Note added in proof: In a recent note, Joseph-
son7 uses a somewhat similar formulation to
discuss the possibility of superfluid flow across
the tunneling region, in which no quasi-particles
are created. However, as pointed out by the
author (reference 3), pairing does not extend
into the barrier, so that there can be no such
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super fluid flow.

*Work supported in part by the U. S. Army Re-
search Office, Durham, North Carolina.

M. H. Cohen, L. M. Falicov, and J. C. Phillips,
Phys. Rev. Letters 8, 316 (1962).

See, for example, I. Giaever and K. RIegerle,
Phys. Bev. 122, 1101 (1961);I. Giaever, H. B. Hart,
Jr. , and K. Megerle, Phys. Bev. 126, 941 (1962).

J. Bardeen, Phys. Rev. Letters 6, 57 (1961).
N. N. Bogoliubov, Nuovo cimento 7, 794 (1958);

J. G. Valatin, Nuovo cimento 7, 843 (1958).
J. Bardeen, L. N. Cooper, and J. R. Schrieffer,

Phys. Rev. 108, 1175 (1957). The use of p* in the

definition of y* is a symbolic way of writing the wave
functions given explicitly in Eqs. (3.3) to (3. 5). The
particle-conserving operators defined with p* obey
the same equations of motion as the Bogoliubov-
Valatin operators, (3a} and (3b). In linearizing the
equations of motion, a term c*c~c is written (c "c*p)p~c,
instead of (c~c*)c, as in the Bogoliubov theory. Since
the quasi-particle operators are to O(1/Y) independent
of the number of ground-state pairs, and since the com-
mutator [P-pÃ, p *] =0, one may treat p as a c number
in most calculations.

~J. B. Schrieffer and D. M. Ginsberg, Phys. Rev.
Letters 8, 207 (1962).

TB. J. Josephson, Physics Letters 1, 251 (1962).

OPTICAL CONSTANTS OF ALUMINUM IN VACUUM ULTRAVIOLET

Robert LaVilla* and H. Mendlowitz
National Bureau of Standards, Washington, D. C.

(Received July 16, 1962)

A'e have obtained the values of the frequency-
dependent complex dielectric constant e(e) of
aluminum in the photon energy region of 12-17
eV from the characteristic electron energy loss
spectra. ' The values were obtained by utilizing
the correlation between the intensity of the elec-
tron absorption spectrum of a substance with its
optical properties'~ from recent1. y obtained ine-
lastic electron scattering data. ' The importance
of this method, applied for the first time in this
investigation, is that in this photon energy region
the usual optical methods of obtaining the frequen-
cy-dependent complex dielectric constant are
fraught with many difficulties such as inconven-
ient light sources, vacuum problems, and sur-
face effects, etc.4 An advantage of the inelastic
electron scattering experiments is that one can
in most cases separate the surface effects from
the bulk effects by varying the thickness of the
material to be studied and/or varying the incident
energy of the electrons. The electron energy ab-
sorption spectrum arising from the interaction
of the incident electrons with the "bulk" of the
medium is characterized by Im[1/e*(&)], where
e*(~) is the complex conjugate of the frequency-
dependent e(u). The Kronig-Kramers~ dispersion
relations were then applied to the electron absorp-
tion spectrum, which ranged from 11.1 to 18.3 eV,
to calculate Re[I/e (~)] and, hence, c(~) is ob-
tained. The input data were scaled by means of
the sum rule, ' f ~ 1m[I/e*(~)]d&u = (w/2)vp',

where the plasma frequency (dp ls related to the

number of electrons in the medium available to
interact with the incident electron beam. In the
integration, we take the integrand to be vanish-
ingly small beyond the recorded absorption re-
gion. An estimate' of the influence of neglecting
absorption processes outside the recorded absorp-
tion spectrum was made by adding a hypothetical
contribution,

+Im ~( )de=fJ, +Im —
~ d&u,

0 1

to the sum ru1e, where AE, , and b,E, are the limits
of the recorded absorption spectrum, and f = 5@
at bE, , =7 eV and f=10@at bE, , =30 eV. Figure 1

shows the calculated optical properties with and
without the hypothetical contribution added sep-
arately to the Kronig-Kramers integration.

In this investigation, we found that the optical
constants of aluminum can be approximated by a
two-parameter Drude-like model (solid curve in
Fig. I) with N, the number of "free" electrons
per atom, as 2.6 and T, the relaxation time, as
1.1x10 "sec. The density N was calculated
from ~ ' =4we'N/m, where the plasma frequencyp
(dp was approximated as the value of ~ at the in-
elastic electron absorption peak and m is the free
electron mass. The relaxation time T was ob-
tained from the integrated half-width of the ab-
sorption line. These two parameters compare
quite favorably with the values obtained from op-
tical datas in the region between 2200 A. to 5 g,
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