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Bohm and Staver! have shown how to estimate
the magnitude of the velocity of longitudinal acous-
tic waves in metals by considering the screening
of the motion of the ions by the conduction elec-
trons. In their work a metal is assumed to con-
sist of the plasma formed by the positive ions
and the conduction electrons interacting by means
of Coulomb forces. It was found that a disturbance
of wave vector q propagates with angular frequency
w such that

w2=9p2/6(§, w), 1)

where Qp is the plasma frequency characteristic
of the motion of the ions when the conduction elec-
trons are assumed to be immobile, and €(g, w) is
the dielectric constant® appropriate to the wave
vector q and the frequency w. From (1) and using
the expression (see reference 2) for €(q, w) in the
limit of long wavelength (¢ - 0), one obtains the
equation

So=(z2m/3M )%, (2)

which relates the velocity of sound s, to the veloc-
ity v, of an electron on the surface of the Fermi
sphere; z is the number of conduction electrons
per atom, and m and M are the masses of the
electron and the atom, respectively.

The purpose of this Letter is to investigate the
change in the velocity of sound when the metal in
question is in the presence of a dc magnetic field
of induction EO. We shall use the model of refer-
ence 1 and concern ourselves with temperatures
near absolute zero. In general, the dielectric
constant is a tensor whose components are func-
tions of B,. However, for longitudinal waves
propagating in the direction of EO (i.e., a is par-
allel to B,; we choose a Cartesian system of co-
ordinates whose z axis is parallel to Eo), Eq. (1)
is modified in the simplest fashion by replacing
€(q,w) by €,,(q,w). We show that, in this geom-
etry, the velocity of sound is an oscillatory func-
tion of the magnetic field.

The calculation of €,,(q, w) is carried out using
the method of the self-consistent field,? in which
the equation of motion of the one-electron density
matrix* is solved to first order in the self-con-
sistent potential. One finds the following expres-
sion for the zz component of the dielectric con-

stant:
mw 2

- p } CFe]-
ezz(q, w)=1+ Ng? nkZ)k {[En(kz+q) En(kz) fw]
y ¥4

+[En(kz +q) -En(kz) +hw]™},
En(kz)<E0. (3)

In this relation the symbols nkykz designate the
quantum numbers that characterize the stationary
states® of an electron in the presence of the mag-
netic field B, and the quantities

En(kz) =ﬁw0(n +1) +h’2k22/2m (4)

are the corresponding energy eigenvalues. The
quantum number n is a non-negative integer, w,
and wp are the cyclotron and plasma frequencies
of the electrons, respectively, and N is the num-
ber of conduction electrons in the volume © of the
sample. The sum in Eq. (3) extends over all states
having energy below the Fermi energy E,. The al-
lowed values of ky and k; are determined by peri-
odic boundary conditions.

Expression (3) can be easily evaluated in the
long-wavelength limit (¢ - 0). We obtain

3wp2w0 1 1
(ﬁ,w)=1+2qzv =

€2z n Kn-mw/ﬁq+Kn+mw/ﬁq ’
(5)

Here

Kn =Cm/M)VE, - (n+ Hiw, 42, (6)

and the sum over n extends from n =0 to n =n,,
the largest integer for which K,, is real. The
velocity of sound s thus satisfies the implicit
equation
2
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(7)

Several regions of interest may be considered
depending on the magnitude of the dimensionless
parameters a = (mv,?/2fw,) and b =(msy2/2hw,).
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(a/b is independent of the magnetic field® and is
of the order of 105.)

In the quantum limit, i.e., when a< ()%, all
the electrons are in the first Landau level (z =0),
and we have

s=3zm/(zm +M) 2 (mv > fiw,). (8)

For ordinary metals this formula becomes ap-
plicable for magnetic fields larger than 10® gauss.
However, the region in which b is of the order of
unity or larger is well within the range of attain-
able magnetic fields. For very weak magnetic
fields (b >1) we find

s=8,[1 - 3ab®) Vig(E,Mw,)]. (9)

The function g(£,/Fw,) is periodic in the argument
with period equal to unity. It is convenient to ex-
press E,/fiw, in the form

E lwy,=ny+3+A, (10)

where A lies between 0 and 1. Therefore g de-
pends only on A. In general, we need not distin-
guish between the Fermi energy E in the pres-
ence of the magnetic field and the field-free Fer-
mi energy ¢, (except in the quantum limit), be-
cause their fractional difference is of the order
of a~¥2 which is negligible as compared to the or-
der of magnitude of the quantities that we retain,
namely, a~¥* and (ab?)2. Because of the proper-
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FIG. 1. Fractional change in the velocity of sound
as a function of the magnetic field in the region in which
b>1. The abscissas are indicated starting from an ar-
bitrary half-integral value of E¢/#%w, in the appropriate
range (of the order of 4 x10%) and increasing in steps of
unity. This graph is plotted using g(A) ~ 4(4+4)¥?
- (3 +A) V2 (3 +8)™ 2 - 2AY2 | which is obtained
by using the second Eulerian sum formula’ and retain-
ing only the first three terms.
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ties of the function g, the velocity of sound given
in (9) exhibits an oscillatory variation with the
magnetic field with period proportional to B,™.
The physical origin of this effect is the same that
gives rise to the de Haas—van Alphen oscillations
of the magnetic susceptibility of metals. For a
typical metal and B,=1000 gauss, a=4 x10° while
b=5, so that the amplitude of the oscillations in
the velocity of sound is of the order of }(ab?) ~¥2

=~ 1x10™ which is possible to detect. However,
the period of the oscillation is so small that for
good resolution it is required that the magnetic
field in the sample be uniform within at least two
parts per million. This would probably make this
effect extremely difficult to observe except per-
haps in the case of semimetals where the period
is longer. The results of the calculation of the
function g are displayed in Fig. 1. Because for
higher magnetic fields the resolution is consid-
erably increased, a numerical solution of Eq. (7)
for 5=0.1 and a =10* was carried out and plotted
in Fig. 2. In these calculations use is made of
the second Eulerian sum formula’ retaining the
first three terms.

Finally, it is worth remarking that in practice
this effect can be observed probably only at liq-
uid -helium temperatures and for rather pure
samples, because unless the electron relaxation
time 7 2w,™, the resulting broadening of the Lan-
dau levels smears out the oscillations.

The authors wish to thank Dr. George Alers
for a useful discussion and Dr. Michael J. Harri-
son for interesting conversations and for sending
us a preprint of his work on the change in the ve-
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FIG. 2. Fractional change in the velocity of sound
as a function of magnetic field for 5=0.1 and a = 10%.
The abscissas are again indicated in steps of unity
starting from the half-integral value of a nearest to 10,
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locity of sound in a transverse magnetic field.
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In a recent Letter, Cohen, Falicov, and Phil-
lips! have discussed tunneling of electrons
through a thin insulating layer between a normal
and a superconducting metal on the basis of an
effective Hamiltonian,

= 1

H Hn+HS+HT’ (1)

where H, and Hg are exact Hamiltonians for the

normal and superconducting metals, respective-

ly, and Hp is an operator which transfers elec-
trons from one to the other:

Hp= 2 (T,

k,q,0

@)

* +T * * .
qcko qu kq cqo Cko)

Here & is a quantum number describing states in
the normal metal, ¢ refers to states in the super-
conductor, o is the spin, and the ¢’s are creation
and destruction operators for normal quasi-par-
ticle states in both metals. By making use of
the equations of motion, they derived an ex-
pression for the time rate of change of number
of electrons in the superconductor (Ns> and thus
the tunneling current. They find that the ratio
of tunneling currents in superconducting and
normal states depends only on the density of
states in energy in the superconductor, as in-
dicated by the experiments.?

We would like to discuss their derivation from
a somewhat different point of view, which we
feel brings out a little more clearly the con-
nection with the semiconductor model of a super-
conductor and also with an earlier discussion
of tunneling by the present author.® In the semi-
conductor model, one assumes that there is a
set of normally occupied quasi-particle states
below the gap and a set of normally unoccupied

states above the gap, in one-to-one corres-
pondence with those of the normal metal. At
T=0°K, states above are all unoccupied, those
below occupied, but at a finite temperature
electrons may be thermally excited to states
above the gap, leaving holes in the normally
occupied band. Electrons may be transferred
from the normal to the superconducting metal
into unoccupied states above the gap or into
holes below the gap. Correspondingly, trans-
fer in the reverse direction occurs from oc-
cupied states above the gap or from one of the
filled states below the gap, leaving holes behind.
It is the occupied states above the gap and the
holes below which correspond to quasi-particle
excitations of the superconductor.

What the author showed in his earlier Letter
is that if there is a one-to-one correspondence
between the quasi-particle excitations in normal
and superconducting states, the only significant
factor in the tunneling current is given by the
density of states in energy. However, justifica-
tion for the one-to-one correspondence and the
definition of the quasi-particle states from
microscopic theory was not given.

The quasi-particle states in a superconductor
are usually defined by the Bogoliubov-Valatin
transformation,*

*-v ¢

y *=uc )
q -q!|

3
ar 4y (32)

* c *+v ¢ , 3b
gl % g1 T (3)
where u.q2‘= 1 -vq"’= 31+ eq/Eq); Eg4= (eq2+ AZ)VZ
and -¢ indicates the time-reversal conjugate of
q. These operators do not conserve particle

number and are designed to operate on wave
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