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can possibly be explained by the fact that it has
a cross section comparable to the +, and this
small number of events, spread over the broad
effective-mass range of the p, would not be ob-
served. Considering the strength of the ~, ~ mP

isobar, and the possibility of final state inter-
actions, it is not surprising that multiple-pion
resonances appear to have small cross sections
when there are two nucleons present.

The authors wish to acknowledge a valuable
discussion with J. Bernstein and to thank S. Goud-
smit for valuable editorial suggestions.

FIG. 2. Histogram of the effective-mass distribu-
tion of the two pions from the reaction p+ p —p+ p+ ~+

+ ~ . The solid curve is the phase-space distribu-
tion normalized to the same total area.

same spin and parity, and if the & resonance
does not exist, electromagnetic mixing could
lead to an order of magnitude higher rate for (a)
and (b) than for the usual &u w++m +no (c). On
the other hand, Gell-Mann et al. ' calculate the
decay mode ratio a/c to be only -5%.

To search for the mode ~ m++&i, we have
plotted in Fig. 2 the effective mass m* of the
m+v combination from 683 events of the type
p +p -+ p + p + m++ m . The ~ decay should appear
as a peak at -770 MeV, within the broad band
(700-800 MeV) of the p' decay. Neither the two-' decay of the w nor any sign of the expected
p'~m++~ is observed. The absence of the p'
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A detailed investigation of the energy dependence
of the K+-proton scattering cross section at low
momenta has been carried out. In the region from
140 to 642 MeV/c, the nuclear cross section varies
little with energy. The cross sections are distinct-
lv lower than values quoted earlier. ' The momen-
tum dependence of the phase shifts below 300 MeV/
c can only be interpreted as s-wave scattering and

does not admit isotropic p-wave solutions such as
were obtained as possible ambiguities at 810 MeV/
c.' The isotropy in the differential cross sections
and the constructive interference with Coulomb
scattering at each of the momenta show that the
repulsive s-wave character of the K -p T =1 state
persists throughout this region.

An s-wave effective-range fit to the experimental
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K+-p data up to 642 MeV/c gives, for the scatter-
ing length, a = -0.29 + 0.015 fermi and, for the ef-
fective range, r, =0.5+ 0.15 F. It should be noted
that for the highest momentum included in the fit,
the quantities 1ak I and rP remain below unity.
Alternatively, the data can also be represented
by a purely repulsive core of radius r~ =0.31
+0.01 F.

The experimental data for this analysis were
obtained from photographs taken with the 15-inch
LRI bubble chamber. A mass-separated K+ beam
described earlier' was conveyed by a beam trans-
port system at 645 MeV/c. The background of
light particles (pions, muons, and electrons) was
approximately 0.5%. The method of analysis of
the data at 642 MeV/c is very similar to that de-
scribed earlier. ' At this momentum only about
0.5% of the total cross section, or about 0.06
+ 0.03 mb, is due to inelastic pion production. '

Four distinct series of pictures taken are de-
scribed here, the first with the direct K+ beam
giving 642+ 7 MeV/c in the chamber and three
more with various thicknesses of tungsten ab-
sorbers placed immediately ahead of the chamber.
This gave average momenta of 520+15, 355+25,
and approximately 220 MeV/c, respectively. At
the low'est-momentum series the initial spread of
the beam, as well as the energy loss in the absorb-
er and in the chamber liquid, yields a K-meson
path-length distribution over the momentum inter-
val from zero to 300 MeV/c. Since the path length
falls off rapidly at the edges of the momentum dis-
tribution, we have accepted for the purpose of
cross-section determinations a momentum band
from 120 to 280 MeV/c, which we divided into five
momentum intervals.

The momenta of all K-8 interactions were de-
termined by kinematical fling at the interaction
point. The path lengths contributing to the various
momentum intervals were computed from the num-
ber of "tau" decays in flight, their known mean
life, and the K+ branching ratio into this decay
mode. For this purpose all three-prong "tau-like"
decays were measured. From kinematical fitting
it was possible (a) to select the true r-meson mode,
and (b) to get an accurate momentum at which the 7.

decay occurred. At the lowest momentum band
(120 to 280 MeV/c), where the path-length distri-
bution was particularly critical, we measured
10$ of all tracks and obtained the path-length
distribution from the measured momentum dis-
tribution and the measured track lengths. This
provided an additional method independent of the
7 -decay distribution.
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The experimental differential cross sections
are shown in Fig. 1. %e have taken a cutoff at a
scattering angle corresponding to cos8c m = 0.95,
beyond which detection efficiencies decrease rap-
idly. The repulsive K+-N potential is evident at
all momenta, and, in particular, in the low'est
momentum interval, where the constructive in-
terference with Coulomb scattering is most strik-
ing.

The isotropic character of the K+-p differential
cross section can be fitted for any single mo-
mentum interval by (a) pure s-wave scattering,
(b) p»-wave scattering, and (c) a suitable mix-
ture of p„,- and p~, -wave scattering. These am-
biguities were discussed in detail in our earlier
work at 810 MeV/c. ' However, with the series
of momenta we have available now, it becomes
clear that the p-wave solutions can be ruled out.
In particular at momenta below 300 MeV/c the
phase-shift behavior disagrees clearly with p
waves, i.e. , tan5 ~k'. Furthermore, the varia-

FIG. I. The differential K+-p cross section at the
various momenta. The solid curves correspond to the
differential cross sections computed for repulsive s-wave
scattering. The corresponding phase shifts are given in
Table I. The dashed curve in Fig. 1(a) illustrates the
effect of an attractive s-wave phase shift fitted up to
osec m =0 6
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tion of 5 with momentum is smooth up to 810 MeV/

c; hence a switchover to one of the p-wave solu-
tions appears extremely unlikely.

The differential cross sections were computed
by using pure s-wave and Coulomb scattering am-
plitudes:

g
25~

dQ k'
~ sing

C.m.
i

o. = e'/&v rel'

Sk =the center-of-mass momentum, vrel =the
relative velocity, and 5, =the s-wave phase shift.
The continuous curves shown in Fig. 1, a through
h, are based on the repulsive s-wave phase shifts.

Table I lists these phase shifts as well as the ex-
perimental data from which they were computed.
Column 2 gives the total cross section' up to
cos8c m=0. 85. The phase shifts, column 4, were
computed by equating the experimental cross sec-
tions with the corresponding integral over Eq. (1).
The total nuclear cross sections given in column
3 have been computed from o=4s sin'6, /k'. The
above procedure actually yields two s-wave phase
shifts, an attractive and a repulsive one. For il-
lustration the dashed curve in Fig. 1 shows the
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differential cross section for the attractive solu-
tion 5, =+10.5' fitted up to cos&c m = 0.6. It is clear
by comparison with the experimental differential
cross sections that the attractive solutions can be
eliminated. Figure 2 illustrates the behavior of
the experimental total cross sections, the total
nuclear cross sections, and the repulsive s-wave
phase shifts as a function of the momentum in the
laborator y system.

We have further shown that the data up to 642
MeV/c can be well represented with a two-param-
eter effective-range approximation. A least-
squares fit to the integrated cross sections' up to
355 MeV/c with the constraint of k cot5 = (I/a)
+ &~,k' allows the determination of the scattering
length to within less than 10% (a = -0.29 a 0.02 F),
but leaves large uncertainties in the effective
range' (ra=0. 6+0.6 F). In this momentum inter-

Table I. E -p cross sections and phase shifts from
140 to 642 MeV jc. The experimental cross sections
are quoted up to a cutoff angle corresponding to cos8c m
=0.85. The nuclear cross sections are computed up
to cose c m =1, for pure repulsive s-wave scattering.
The last column gives the corresponding phase shifts.
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140 +20
175 + 15
205 +15
235 +15
265 +15
355 +25
520 +15
642+ 7

Experimental

nuclear+ Coulomb
for cos8c m -0.85

(mb)

14 ~ 9 + 2.5
16.0 + 2.4
13.7 +1.8
12.7 +1.6
11.0 +1.6
11.9 +1.2
11.9 +1.2
11.9 +0.8

nuclear

(mb)

6

(deg)

9.2 +2.1
12,5 +2.2
11.5 +1.7
11.2 +1.6
10.0 +1,6
11.7 +1.2
12.2 ~1.3
12.4 +0.9

-7, 2 +0.8
-10.4 + 0.9
-11.7 +0.9
-13.2 *0.9
-14.0 + 1.1
-20.0 +1.1
-29.4 +1.7
-36.2 +1.4
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FIG. 2. (a) Variation of the measured cross section
with laboratory momentum up to a cutoff angle taken at
cosmic m =0.85. (b) Corresponding total nucleon cross
sections, computed with a repulsive phase shift. Also
given for comparison are the data of Kycia et al. (ref-
erence 1) and Cook et al. , as well as our own data at
810 MeV/'c (reference 2). (c) Repulsive s-wave phase
shifts. It should be noted that at 810 MeV/c about 1 mb
of inelastic scattering is included (reference 2). The
solid curves correspond to the effective-range fit up to
642 MeV/c, the dashed curves to the fit with a purely
repulsive core.
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Table H. Summary of the effective-range approximation and potential fit to the experimental K -p scattering
cross section.

Momentum
interval

(MeV jc) (10 "cm)
0

(10 cm)

y
C

(10 ~3 cm)

Probability
from a

x~ fit

Effective-range approximation
140-355 -0.29 + 0.02
140-642 -0.29 +0.015

Zero-range approximation
140-355 -0.3 *0.01
140-642 .33 +0.01

Hard core
140-642

0.6 +0.6
0.5 +0.15

0.31 +0.01

75%
85%

65%
1%

40%

val the quantities Iak I and r,k, which test the
validity of the effective-range expansion, remain
well below unity. It is remarkable, however, that
the values of the parameters hardly change when
we include data up to 642 MeV/c in the least-
squares fit. The values for the scattering length
and effective range now become a = -0.29+ 0.015 F
and r, =0.5+ 0.15 F, respectively, ' with a good-
ness of fit (X') corresponding to an 85% probability.
It should be noted here that upon inclusion of the
higher momenta the uncertainty in x, has been de-
creased appreciably.

Finally we have also attempted to fit the experi-
mental data directly to a phenomenological poten-
tial. The potential considered was a repulsive
hard core of radius zz followed by an attractive
well of range r~ and depth V.

We find that the experimental data lack the sta-
tistical accuracy needed to determine the three
parameters. It should be noted, however, that a
one-parameter fit, setting V = r~ = 0, fits the data
up to 642 MeV/c with a 4Q% probability, giving a
hard-core radius r =0.31+0.01 F. These results,
as well as the consequences from insisting on a
zero-range approximation, are given in Table II.
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