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Solvable Senescence Model Showing a Mortality Plateau

J. B. Coe,1 Y. Mao,1 and M. E. Cates2

1Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, United Kingdom
2Department of Physics and Astronomy, University of Edinburgh,

King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, United Kingdom
(Received 7 June 2002; published 27 December 2002)
288103-1
We present some analytic results for the steady states of the Penna model of senescence, generalized
to allow genetically identical individuals to die at different ages via an arbitrary survival function.
Modeling this with a Fermi function (of modest width) we obtain a clear mortality plateau late in life:
something that has so far eluded explanation within such mutation accumulation models. This suggests
that factors causing variable mortality within genetically identical subpopulations, which include
environmental effects, may be essential to understanding the mortality plateau seen in many real
species.
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tical population must die exactly at the same age, which is ‘‘Verhulst factor’’ to prevent either population explosion
A common feature of the life history of multicellular
organisms is the progressive decline in the various physi-
ological processes once the reproductive phase is com-
plete. This process of aging has attracted considerable
attention [1–5], particularly after work from the
Human Genome project identified specific ‘‘clock genes’’
[6] which regulate human aging. In addition to these
underlying genes, the environment can play a part. For
example, experimental studies [7,8] have shown that or-
ganisms subject to a reduction in caloric intake without
essential nutrient deficiency display an extension of maxi-
mum life expectancy. How, then, do the effects of evolu-
tion and/or the environment ‘‘pick out’’ a particular
profile of senescence?

Two major theories of aging prevail, the ‘‘mutation
accumulation,’’ where mutations affecting old ages accu-
mulate thanks to a weaker reproductive selection, and the
‘‘antagonistic pleiotropy,’’ where a gene, beneficial in
youth, is deleterious in old age [4]. Traditional mutation
accumulation theories lead to an exponentially increasing
mortality with age, the so-called Gompertz Law [1].
However, it has been experimentally observed that the
rate of mortality, while obeying the Gompertz Law up to
an intermediate age, often shows an unexpected drop at
an advanced age. This drop, valid for many species from
human to medflies, gives rise to a ‘‘mortality plateau,’’
somewhat at odds with theory [9–12]. As a result, an-
tagonistic pleiotropy has been suggested as an essential
part of aging [4,13].

In 1995, with computer simulation in mind, Penna
proposed a mutation accumulation model of senescence,
which quickly became widespread [14]. Gompertz behav-
ior has been reported for the standard Penna model [15],
and variations on the model were proposed to account for
demographic features [16–18], as well as catastrophic
mortality [19,20]. However, a major shortcoming of the
Penna model [21] was examined only recently: Ac-
cording to the model, all members of a genetically iden-
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obviously untrue. Recent attempts in removing this de-
terminism within the Penna model gave rise to a gently
decelerating old age mortality, without reproducing a
satisfactory mortality plateau [22].

Here we present a general formulation and an exact
solution to the Penna model, which, together with a
simple Fermi survival function, gives rise to a convincing
mortality plateau. The introduction of a gene-dependent
survival curve (replacing a single parameter, the deter-
ministic age of death) enlarges the parameter space for
simulations considerably. This makes analytical results
all the more valuable, especially those that do not depend
on the survival function chosen.

Below, we first consider a particular version of the
Penna model (by setting the mortality threshold T � 1),
and present for it an exact analytic solution. Furthermore,
this solution is robust against changes in the survival
function. In the case of a Fermi function for survival,
we show the presence of an extended mortality plateau.
The generalization of the analytic solution to T > 1 is
then given.

In the original Penna model [14], each individual car-
ries a string of binary numbers, which stays fixed for that
individual’s lifetime. A ‘‘1’’ for the ith bit represents the
effect of a harmful gene which causes the individual to be
struck by a heritable disease upon reaching the age of i.
Thus, as an individual ages, its bit string is sequentially
examined and diseases are accumulated. The individual
expires upon encountering the Tth deleterious bit, where
T is a preset mortality threshold. Qualitatively, T repre-
sents the number of heritable diseases required to make
an individual nonviable; within the original model, if the
Tth 1 occurs at the lth bit, the individual will survive
precisely to age l and no more. As long as it survives, the
individual has a probability (rate) b to give birth. The
offspring inherits the same bit string from the parent
except for some mutations occurring at a small rate �.
In simulations, the birth rate b is often regulated by a
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or decay [1]. A different Verhulst factor, reducing popu-
lations of all ages at every time step (but with a fixed birth
rate), has also been used, for which the Penna model can
be formulated analytically into an eigenvalue equation
and solved numerically [23].

In the T � 1 limit, the population can be described by a
probability function n�l� of the first deleterious bit occur-
ring at position l. Equivalently, n�l� is simply the number
of such l-type individuals at any particular time. Then the
evolution of n�l� is given by
dn�l�
dt

� bn�l�e��l �
n�l�
l

� b�1� e���e��l
X1

l0�l�1

n�l0�;

(1)
where the first term corresponds to the mutation-free
reproduction; the second term gives the mortality, where
1=l is the average rate of mortality for an l-type (which
assumes the population changes slowly in the lifetime of
an individual); the third term represents the switching
from l0 to l due to a single mutation [24]. Note that there is
no noise in this equation. Hence it describes the thermo-
dynamic limit of a large population in which determin-
istic dynamics is recovered. Note also that, in a stationary
state of the original Penna model, l-types are distributed
uniformly over all ages up to l at which they promptly die,
so the mortality rate is exactly 1=l. However, our formu-
lation is more general in that l-types may have an arbi-
trary survival function provided their mortality rate
averages to 1=l. (This is the same as demanding the
average life expectancy for an l-type to be l, which
we may take as the definition of l.) As in the original
Penna model, only bad mutations (from 0 to 1) have been
included.

For a stationary state, the constant introduction of bad
mutations is balanced by the longer reproductive lifetime
of healthier individuals. Setting dn=dt � 0, Eq. (1) can be
solved exactly to give the recursion relation

n�l� 1�

n�l�
�

l� 1

l
e�l � bl

e��l�1� � b�l� 1�e��
: (2)

Before going further, we need to examine the interde-
pendence of the mutation and birth rates � and b.
Obviously a very large b coupled with a negligible �
would result in an exponential population growth. A sta-
tionary state requires a specific combination of � and b.
An extremely long-lived individual (large l) produces
many offspring in total (proportional to l), but mutation
reduces the probability of it reproducing itself accurately
by an exponential factor (e��l). This means that a very
large l cannot maintain itself and must rely instead on
mutated reproduction of even fitter individuals. Such a
cascade is not possible in a finite population which must,
at any time, contain a maximum l � lmax; the above ar-
gument shows that, if too large initially, this will de-
crease with time until the lmax subpopulation is indeed
self-sustaining. The evolution equation (1) for this sub-
population then reads
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dn�lmax�

dt
� g�lmax� n�lmax�; (3)

where the growth rate function g�l� � be��l � 1=l, and a
steady state demands g�lmax� � 0; namely,

be��lmax � 1=lmax � 0: (4)

Next we argue that for a steady state in the thermody-
namic limit, we should have

g�lmax � 1�< 0; g�lmax � 1� 	 0: (5)

Without the first condition, the subpopulation with l �
lmax � 1 would grow thanks to the extra proliferation of
lmax � 1 as a result of a mutation to lmax. The second
condition ensures the stability of lmax � 1 upon approach-
ing steady state. In the continuum limit, this is equivalent
to demanding that the derivative of g�l� should be zero.

These conditions are well confirmed by our numerical
simulations of the Penna model. However, if n�lmax � 1�
falls to zero discontinuously significantly before the
steady state is reached, then the second condition in
Eq. (5) might not be strictly required. This is unlikely
in the thermodynamic limit and we ignore such contin-
gencies from now on. It would also happen if a maximum
bit-string length less than lmax were imposed in a simu-
lation; see below.

Equations (4) and (5) together lead to

1

e� � 1
	 lmax <

1

e� � 1
� 1; (6)

which implies a unique integer value for lmax given any �.
Whenever 1=� is an integer, it lies in the above specified
range, and Eqs. (4) and (5) greatly simplify to

lmax � 1=�; b � �e; (7)

where only one of lmax, � and b is a free variable.
Choosing � and b such that lmax � 20; 30, the result of
the recursion relation (2) is plotted in Fig. 1, with nor-
malization

P
l n�l� � 1.

Our simulation results are obtained following the
method proposed by Penna [14], where mutation rate is
prespecified as is the maximum string length lsim (often
set to 32). However, a Verhulst factor is included to
regulate the birth reproduction rate and the system finds
its own stationarity by adjusting the birth rate. The string
length dependence has been investigated by computer
simulation, but no universal results were found [25]. Our
analysis suggests that the results depend on the value of
lsim in relation to lmax, which is set by the mutation rate,
Eq. (7). If lsim > lmax, no string length effect is expected
as the final bits of the string do not affect the system.
Therefore, the most efficient simulation is performed
when lmax approaches lsim from below.

With the original Penna model, the only mortality at
age x occurs to individuals with l � x; these have number
density n�l�=l and mortality rate 1. In other words, the
survival function of an l-type is a square function with a
height of 1 and width l. The normalized mortality at x is
therefore
288103-2
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FIG. 3. Mortality rate for Fermi survival functions of differ-
ent width w, and lmax � 30.
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FIG. 1. Life span distribution n�l� for lmax � 20 ���; 30 ���,
compared with simulations (boxes). Simulation size 107, aver-
aged over 10 runs.
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M�x� �
n�x�=xP
1
l�x n�l�=l

; (8)

where the denominator gives the total number of indi-
viduals living at the age x, and the numerator gives the
number of individuals dying at the age x. The resulting
population mortality exhibits a Gompertz-like behavior
up to an intermediate age but then slows down as lmax is
approached [15]; see Fig. 2. But since the mortality at this
point reaches 1, there is no population left to continue the
incipient plateau and only its onset is observed.

However, Eqs. (2)–(7) make no assumption about the
survival function of an l-type and apply equally well to,
say, a Fermi function [17,18]:

f�x; l� �
N

1� exp
�x� ~ll�=w~ll�
;

where w is its width in units of the Fermi level ~ll. N
ensures f�0;~ll� � 1, and~ll is chosen so that the average life
span

P
x f�x; l� � l. In fact, ~ll � l to within terms of order

exp
�1=w�; the latter are safely ignored in the following
plots, where we choose small w’s as examples of modest
influence of environmental factors on the life expectancy
of genetically identical individuals. The analysis leading
to the recursion result [Eq. (2)] stands, and the mortality
function corresponding to Fig. 2 is plotted in Fig. 3.

A pronounced mortality plateau is now observed. By
varying w in a reasonable range of 0.01–0.5 and the
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FIG. 2. Mortality rate with lmax � 30 (note log scale).

288103-3
choice of b, which in turn determines n�l�, it is possible
to obtain different shapes of this mortality plateau which
resemble those observed experimentally in various spe-
cies [9]. The different values of w could be easily justified
as the species-dependent susceptibility to environmental
variations, as well as other factors. Thus, the Penna
model, coupled to a Fermi survival function, is sufficient
to account for the plateau observed in mortality for
different species.

Now we extend the analysis to the multidisease cases
where T > 1. In this scenario, the obvious extension of
our existing theory is to write n�l1; l2; . . . ; lT� which gives
the number of individuals with deleterious bits at posi-
tions l1; l2; . . . ; lT on their ‘‘genetic’’ strings. And a simi-
lar, albeit more complex, evolution equation can be
constructed. However, it is immediately evident that the
final lT holds a special position as this is the bit which
determines the individual’s death. In contrast, the posi-
tions of other deleterious bits are less significant, in fact
so insignificant as to inspire an ansatz,

nT�l� � n�l1; l2; . . . ; l�;

for the steady state. Neglecting multiple mutations which
will be addressed elsewhere [26], we find that the relevant
generalization of Eq. (1) reduces to

0 �
dnT�l�
dt

� bnT�l�e���l�T�1� �
nT�l�
l

� bT�1� e���e���l�T�1�
X1

l0�l�1

nT�l
0�: (9)
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FIG. 4. Life span distribution function Cl
T�1nT�l� for T � 4.
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FIG. 5. Mortality rate for T � 4.
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Our notation means n1�l� � n�l�, defined earlier. The
ansatz implies that the distribution function n�l1; l2;
. . . ; l� depends merely on the position l and not on any
of the others. It is possible that there are other solutions
not contained in the ansatz; without claiming uniqueness
we note that our simulations show the ansatz leads to a
valid solution. Equation (9) can be solved to give the
recursion

nT�l� 1�

nT�l�
�

l� 1

l
e��l�T�1� � bl

e��l�T�2� � b�l� 1��1� T � Te���
:

Since for every l there are different combinations of
having the remaining T � 1 mutations, the correct nor-
malization is now

P
l C

l
T�1nT�l� � 1, where Cl

T�1 is the
number of combinations of choosing T � 1 out of a total
of l, and Cl

T�1nT�l� gives the weighted probability of
finding an l-type. The stability criterion for the multi-
disease case reads

lmax � 1=�; b � �e1���T�1�; (10)

which recovers Eq. (7) for T � 1. Choosing lmax � 30 as
before and T � 4, we plot the weighted mutation distri-
bution function in Fig. 4. The mortality rate with the
same Fermi survival function as before is presented in
Fig. 5.

In conclusion, we have analyzed the T � 1 case of the
Penna model, finding a nontrivial steady state solution for
an arbitrary l-dependent survival function, and gained by
ansatz similar solutions for the general T case. Our result
suggests the mortality plateau arises from a variation in
the mortality within genetically identical subpopulation.
Our analysis also shows the importance of the maximum
sustainable longevity lmax, set by the mutation rate, which
determines, for example, whether there is any effect of
the bit-string length lsim used in simulations (there is such
an effect only if lsim < lmax). It is hoped that the analytic
solution presented here will provide guidance for further
simulations. In our own future work we will describe the
continuum limit (in l) of the theory presented here and
deal with other, more technical aspects of the Penna
288103-4
model such as multiple mutations and the Verhulst factor
coupled with noise [26].
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