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Nonlinear Effects from Dipolar Interactions in Hyperpolarized Liquid 129Xe
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We investigate nonlinear effects of long-range dipolar interactions in a spherical sample of hyper-
polarized liquid 129Xe. Using two high-Tc SQUID detectors we directly measure the evolution of
the magnetization gradients. For small initial rf tip angles we observe an increase in the trans-
verse relaxation time T�

2 by a factor of 5 and coherent oscillations of magnetization gradients. For
large tip angles we observe an exponential growth of the magnetization gradients and demonstrate a
gain in sensitivity to magnetic field gradients by a factor of 10. Our results are in quantitative agreement
with simple analytical predictions. We discuss applications of these nonlinear effects for precision
measurements.
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magnetization gradients in good agreement with simple collection of liquid Xe. By combining this information
In liquid state NMR the magnetic dipolar interactions
between neighboring spins quickly average out due to
diffusion, yielding very narrow NMR lines. However, di-
polar fields from distant spins do not average out and can
lead to dramatic effects if the average magnetization of
the sample is sufficiently large. Such nonlinear effects due
to long-range dipolar interactions have recently attracted
much attention [1–6]. While they often represent a nui-
sance for high resolution NMR, they can also be used to
enhance sensitivity in precision measurements, for ex-
ample, in a search for a permanent electric dipole mo-
ment (EDM) in liquid 129Xe [7]. Long-range dipolar
interactions in cold gases have also generated much in-
terest recently [8]. Under certain conditions long-range
dipolar interactions lead to an instability of a uniform
magnetization distribution such that any perturbation
produces exponentially growing magnetization gradients.
Previous experimental investigations of these effects
used conventional NMR techniques and focused on the
behavior of free induction decay (FID) signals [2–5] or
spin-echo trains [7] that are sensitive only to the total
magnetization of the sample.

Here we describe the results of the first study of non-
linear dipolar effects using two SQUID magnetometers
that allow a direct measurement of the magnetization gra-
dients in the sample. The SQUID magnetometers have
pickup coils comparable to the size of the sample and are
preferentially sensitive to magnetization in different parts
of the cell. The phase difference between the signals
detected in the two SQUIDs is directly proportional to
the first-order gradient of the magnetization.

We observe two distinct regimes in the behavior of the
magnetization gradients, in agreement with previous
theoretical predictions [1,6]. For small tip angles of the
magnetization from the magnetic field the dipolar inter-
actions lead to a suppression of the magnetization dephas-
ing in external field gradients. We observe FIDs that last
5 times longer than would be expected in the absence of
dipolar fields.We also observe coherent oscillations of the
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analytical models. For large tip angles we observe an
exponential growth of the magnetization gradients in
excellent agreement with predictions. We demonstrate
how this exponential growth of the phase difference can
be used to obtain an enhancement of sensitivity to mag-
netic field gradients. Theoretical amplification factors can
be extremely large, while experimentally we have ob-
served amplification by more than a factor of 10.

The measurements are performed using hyperpolar-
ized liquid 129Xe in a magnetic field of 10 mG. Such
low-field environment is particularly well suited for
precision measurements. We obtain ambient magnetic
field gradients of about 1 �G=cm without using shim-
ming coils. By using a hyperpolarized liquid and SQUID
magnetometers sensitive to dc flux we completely avoid
the usual penalty in signal-to-noise ratio associated with
low-field NMR.

Hyperpolarized 129Xe is produced using the standard
method of spin-exchange optical pumping [7,9]. The gas
flows through an optical pumping cell where it is polar-
ized by spin exchange with Rb vapor. Polarized 129Xe (in
natural abundance) is accumulated in ice form at 77 K in a
2 kG magnetic field. After approximately 25 min the ice is
melted and the gas flows through a 1=4 in: copper tube
into the magnetic shields and condenses in a spherical
glass cell with an inner radius R � 0:617� 0:005 cm, as
shown in Fig. 1. A set of coils inside the shields creates a
10 mG magnetic field and allows application of rf pulses
with a true rotating field and control of linear magnetic
field gradients. The NMR signal is detected using high-Tc
SQUID detectors made by Tristan Technologies [10]. The
pickup coil of the SQUID detectors is an 8� 8 mm
square loop. They are located 1.6 cm from the center of
the cell and are tilted by 45� relative to the magnetic field.
To accurately determine the position of the SQUIDs
relative to the Xe cell we attach a calibration wire loop
to the cell and measure the size of the signal that a small
current flowing through the loop induces in the SQUIDs.
We image the cell onto a CCD camera to monitor the
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FIG. 2 (color online). SQUID signals (top plot) and the phase
difference between them (bottom plot, circles) following a 90�

pulse. The initial phase evolution (t < 4:5 sec) is well described
by a fit based on Eq. (3) (solid line). Inset: Relative orientation
of the magnetization and SQUIDs at t � 3:6 s. Triangles show
data with the same field gradient but a 35� pulse together with a
linear fit (dashed line) based on Eq. (5).
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FIG. 1. Low field NMR setup (view from above). Polarized
liquid 129Xe is contained in a spherical cell maintained at 173 K
by flowing N2 gas. High-Tc SQUIDs are submerged in LN2.
The Dewar is made from G11 fiberglass.
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with the buildup of dc magnetization detected by the
SQUIDs we can monitor the uniformity of the polari-
zation of 129Xe as it condenses in the cell.

Most of the features of our data can be understood
using a simple model for magnetization gradient growth
discussed in [7] extended to arbitrary tip angles. Here we
limit the discussion to the effects of longitudinal field
gradients, H � �H0 � gz�ẑz. We first consider an expan-
sion of the magnetization keeping only linear gradients in
the direction of the applied gradient,

M�r; t� � M0 �m�t�M0
z
R
; (1)

and later consider the effects of higher-order terms. In a
spherical cell linear magnetization gradients create only
linear gradients of dipolar fields. In the rotating frame,
the total magnetic field is

B �

�
8
M0z
15R

mx;
8
M0z
15R

my;	
16
M0z
15R

mz � gz
�
: (2)

The time evolution of the magnetization is determined
using the Bloch equations dM=dt � �M�B. Spin re-
laxation [7] and diffusion [11] can be neglected, as their
time scales are much longer than the time scale for di-
polar interactions.We assume an initial uniform magneti-
zation M0 along the ẑz axis and consider the evolution
after an rf pulse that tips it by an angle � into the x̂x direc-
tion of the rotating frame. While all components of the
magnetization develop some gradients, our measurements
are primarily sensitive to the gradient of the ŷy component.
Substituting Eqs. (1) and (2) into the Bloch equations
gives the following time evolution for the dimensionless
linear magnetization gradient parameter my:

my�t� � 	
�gR
�

sin��� sinh��t�; (3)

� �
4

���
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M0��1	 3 cos�2���1=2: (4)

Here � is proportional to the strength of the long-range
287601-2
dipolar interactions. The magnetization gradient parame-
ter my can be directly measured as a phase difference ��
between the ac signals detected in the two SQUIDs, as
illustrated in the inset of Fig. 2. We calculate the con-
volution of the spatial magnetic field sensitivity of the
SQUIDs with the magnetization profile and find that for
my & 1 the phase difference �� � �my= sin���, where �
is a numerical factor that depends on geometry, for our
dimensions � � 0:46� 0:01.

From Eq. (4) it immediately follows that for � > 35�

(real �) the dipolar interactions lead to exponential
growth of magnetization gradients, while for �< 35�

(imaginary �) they produce oscillating magnetization
gradients. Exponential dephasing for � > 35� was first
predicted in [1] based on a numerical model. It has been
observed indirectly as a sharp drop in the amplitude of an
FID [4] or a spin-echo train [7]. Using two independent
detectors we directly measure the initial evolution of the
magnetization gradients before they lead to an appreciable
change in the overall size of the NMR signal. The top
panel of Fig. 2 shows the signals from the two SQUIDS
following a 90� pulse in the presence of a linear magnetic
field gradient g � 8:4� 1:0 �G=cm. The circles in the
bottom panel show the phase difference between the two
signals.

We determine the initial magnetization from the
amplitude of the SQUID signals. For this data set
287601-2
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FIG. 3. Top panel: Envelope of the two SQUID signals (solid
and dashed lines) following a 3:5� pulse in a 42 �G=cm
gradient. In the absence of dipolar interactions much faster
decay of the signal (dot-dashed lines) is expected. Bottom
panel: Phase difference between the SQUID signals with a fit
to exponentially decaying oscillations (solid line).
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M0 � 42� 2 �G where the error is dominated by the
uncertainties in the dimensions of the cell and the dis-
tance from the cell to the SQUIDs. From Eq. (4) we
obtain � � 0:74� 0:04 sec	1 while a fit to the phase
difference data based on Eq. (3) gives � � 0:75 sec	1

and a magnetic field gradient g � 8:0 �G=cm. We ob-
tained equally good agreement with the model in other
data sets with a wide range of M0 and g. The phase
difference begins to deviate from the predictions of the
linear model when my= sin��� � ��=� reaches approxi-
mately 0.5.

It also follows from Eq. (4) that for � � 35� the effects
of dipolar interactions can be turned off as long as the
linear expansion of the magnetization remains valid. For
� � 0 the phase difference grows linearly in time

�� � ��gRt; (5)

as shown by the triangles in the bottom panel of Fig. 2 for
M0 � 24 �G. For these data the applied magnetic field
gradient is g � 8:4� 1:0 �G=cm while the fit to the
phase difference gives g � 7:2 �G=cm.

For large tip angles the 129Xe atoms act as a self-
gradiometer, amplifying the magnetization gradients by
a factor G � sinh��t�=�t until they become large. Given
a certain noise level in the detection of the phase differ-
ence it allows a significant improvement in the sensitivity
to small changes of the magnetic field gradient g or a re-
duction in the measurement time. In Fig. 2 the amplifi-
cation factor is given by the ratio of the solid and dashed
lines and reaches about 10 at t � 5:5 sec. The amplifica-
tion factor G in principle can be extremely large since
damping of the magnetization gradients due to diffusion
and transverse relaxation occurs on a time scale of hun-
dreds of seconds. Using two SQUID detectors it is pos-
sible to measure the phase evolution before there is a
substantial decay in the amplitude of the signal and apply
a feedback to the magnetic field gradient to prevent de-
phasing of the spins. By applying a small rotating mag-
netic field it should also be possible to suppress the
dephasing due to transverse magnetic field gradients [7].
Technical limitations such as fluctuations in the magneti-
zation distribution and magnetic field gradients are likely
to limit the maximum achievable gain in sensitivity. As
discussed in [7] this amplification of magnetic field gra-
dients can be used to increase the sensitivity in an EDM
search.

For tip angles � less than 35� Eq. (3) predicts oscil-
lations of the magnetization gradients preventing their
linear growth. The behavior of the magnetization for � �
3:5� and a magnetic field gradient g � 42 �G=cm is
shown in Fig. 3. We indeed observe such oscillations as
well as a dramatic increase of the transverse relaxation
time. The decay of the transverse signal expected in the
absence of dipolar interactions is shown by the dot-
dashed line in Fig. 3 and is about 5 times faster than
what we measure. This behavior was observed for all data
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sets with tip angles ranging from 3:5� to 20�, magneti-
zations from 10 to 80 �G, and external field gradients
from 12 to 120 �G=cm. Similar effects of ‘‘spectral
clustering’’ have been previously observed in U shaped
samples [4,12] where the initial magnetic field inhomo-
geneities are caused by the magnetization itself. In our
case the signals have only one spectral line and dipolar
interactions lead to ’’spectral narrowing’’ in external field
gradients. This effect can in certain cases increase the
NMR frequency resolution without the need for careful
shimming of the magnetic field gradients.

Several features of our small tip angle data are well
described by the model including only linear magnetiza-
tion gradients. Equation (3) predicts a frequency !th �
i� and an amplitude Ath � ��gR=!th for the oscillations
in the phase difference, but does not explain their decay.
We fit the oscillations to an exponentially decaying sine
wave �� � A sin�!t� exp�	t=��, although the decay is
only approximately exponential. Figure 4 shows with
circles a comparison of the amplitude and frequency of
the oscillations with the predictions of the model for all
data sets. We find that the model works well for the
amplitude of the oscillations, which reflects the initial
rate of gradient growth and for the frequency of oscilla-
tions with a small amplitude, when the magnetization
gradients are small.

Other qualitative features of our data cannot be ac-
counted for by the simple model. The decay time of the
phase oscillations �, which ranges from 8 to 60 sec, is
too fast to be explained by diffusion. We find that 1=�
287601-3
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FIG. 4. Ratio of the amplitude (top panel) and frequency
(bottom panel, open circles) of the phase oscillations to the
predictions of the linear gradient model. Solid squares show the
ratio using the model including higher order gradients.
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approximately scales with the magnetization and is likely
due to higher-order magnetization gradients. Another
interesting feature is a dramatic difference in the enve-
lope of the two SQUID signals, shown in Fig. 3. We find
that for the SQUID located on the side of the cell where
zgM0 is negative the signal has a pronounced amplitude
modulation proportional to the amplitude of the phase
oscillations, while on the side where zgM0 is positive the
signal has almost no amplitude modulation. Also note
that after the decay of amplitude modulation the signals
in the two SQUIDs are slightly different, indicating that
the magnetization develops a steady-state gradient.

To account for these features we extend our model by
including higher-order terms in the expansion of the
magnetization given by Eq. (1). We include all terms of
the form zn�x2 � y2�m=Rn�2m with n� 2m � 4. We then
calculate the magnetic field gradients created by each
term in the spherical cell and solve numerically the re-
sulting system of coupled differential equations. We find
that the significance of higher-order terms grows very
quickly, so we are not able to follow the evolution of the
magnetization for a long time. Nevertheless, the model
does account for several features of our data. The fre-
quency of phase oscillations predicted by the higher-order
model, as determined from the time of the first zero
crossing, is in good agreement with measurements, as
shown in Fig. 4 with squares. The model also gives the
correct sign for the asymmetry observed in the envelope
of the SQUID signals. Because of rapid growth of higher-
order field gradients we could not obtain a quantitative
prediction for � or the transverse relaxation time T�

2 .
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Experimentally we find that T�
2 ranges from 50 to

250 sec for g from 12 to 80 �G=cm. We found that 1=T�
2

approximately scales with g, resulting in a roughly con-
stant factor of spectral narrowing. Relaxation of the
steady-state gradients due to diffusion may play a role
in determining T�

2 . In the absence of applied gradients we
obtained T�

2 over 800 sec.
We also performed a numerical simulation of the mag-

netization evolution. Following [13] we calculate the
dipolar magnetic interactions in Fourier space and run
the numerical model on a grid of 643 points. We find that
while the numerical model reproduces well all qualita-
tive trends of the data, the edge effects are too large to
provide a quantitative prediction for the decay of the
phase oscillations in small tip angle data. Quantitative
explanation of these effects will require development of
new techniques for modeling the behavior of this non-
linear self-interacting system.

In conclusion, we have performed the first detailed
study of long-range dipolar interactions by direct mea-
surements of the evolution of magnetization gradients.We
find a rich set of features which are generally in good
quantitative agreement with simple models. For large tip
angles the dipolar effects lead to an exponential gain in
sensitivity to magnetic field gradients, while for small tip
angles they lead to a lengthening of the transverse spin
relaxation time. These effects can be used to enhance the
sensitivity in measurements of the magnetic field gra-
dients and average fields, respectively.

This work was supported by NSF, DOE, Packard
Foundation, and Princeton University.
[1] J. Jeener, Phys. Rev. Lett. 82, 1772 (1999).
[2] Y.-Y. Lin, N. Lisitza, S. Ahn, and W. S. Warren, Science

290, 118 (2000).
[3] B. Villard and P. J. Nacher, Physica (Amsterdam) 284B,

180 (2000).
[4] K. L. Sauer, F. Marion, P.-J. Nacher, and G. Tastevin,

Phys. Rev. B 63, 184427 (2001).
[5] P. J. Nacher, N. Piegay, F. Marion, and G. Tastevin,

J. Low Temp. Phys. 126, 145 (2002).
[6] J. Jeener, J. Chem. Phys. 116, 8439 (2002).
[7] M.V. Romalis and M. P. Ledbetter, Phys. Rev. Lett. 87,

067601 (2001).
[8] S. Giovanazzi, A. Görlitz, and T. Pfau, Phys. Rev. Lett.

89, 130401 (2002).
[9] B. Driehuys et al., Appl. Phys. Lett. 69, 1668 (1996).

[10] Tristan Technologies, Inc., 6185 Cornerstone Court East,
Suite 106, San Diego, CA 92121.

[11] J. Naghizadeh and S. A. Rice, J. Chem. Phys. 36, 2710
(1962)

[12] D. Candela, M. E. Hayden, and P. J. Nacher, Phys. Rev.
Lett. 73, 2587 (1994).

[13] T. Enss, S. Ahn, and W. S. Warren, Chem. Phys. Lett. 305,
101 (1999).
287601-4


