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We calculate the contribution of superconducting fluctuations to thermal transport in the normal
state, at low magnetic fields. We do so in the Gaussian approximation to their critical dynamics which is
also the Aslamazov-Larkin approximation in the microscopics. Our results for the thermal conductivity
tensor and the transverse thermoelectric response are new. The latter compare favorably with the data of
Ong and collaborators on the Nernst effect in the cuprates.
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The study of fluctuations in superconductors [1] had a
marked revival after the discovery of the cuprate super-
conductors. It was realized early that their short coher-
ence lengths produce a large regime of strong fluctuation
phenomena [2]. More recently, the “pseudogap” region of
the cuprate phase diagram has come into sharp focus, and
one line of thought attributes its features to strong super-
conducting fluctuations [3,4]. Among the most striking
experimental findings that plausibly support this link are
recent measurements by Ong’s group [5] where the Nernst
effect becomes sizable far above T, in the underdoped
regime of the high-temperature superconductors. As the
Nernst effect is small in ordinary metals and large in the
vortex state of superconductors, the a priori case for
crediting superconducting fluctuations is strong.

In this Letter, we calculate the contribution of Gaussian
superconducting fluctuations to the transverse thermo-
electric response above 7, in the low magnetic field
limit—the simplest computation that can be used for a
quantitative comparison with these experimental results.
This is already a nontrivial exercise as it requires a proper
subtraction of bulk magnetization currents that enter
naive expressions [6]. We also give results for the thermal
conductivity tensor, thus presenting a full picture for
Gaussian thermal transport in the system.

Our result for the transverse thermoelectric response
depends only on the superconducting coherence length &,
making it particularly suitable for comparison with ex-
periment. We present a comparison with data from differ-
ent samples of La,_,Sr,CuO, (LSCO). We find that the
Gaussian Nernst effect, using the actual T, is quantita-
tively comparable to the measured signal in the optimally
doped and overdoped samples. For the underdoped
sample, the measured signal in the pseudogap region is
larger and requires postulating a suppression of the actual
T, from the mean-field T, consistent with the supercon-
ducting fluctuations scenario, in order to achieve an
understanding of its magnitude, as we illustrate by a
self-consistent Hartree computation.

Before proceeding, we note that the traditional descrip-
tion of the Nernst effect is of thermally driven vortices
producing a transverse voltage via phase slips. In a fluc-
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tuation regime, this description is convenient only if the
vortices provide an effective parametrization, as we ex-
pect will be the case near a two-dimensional Kosterlitz-
Thouless transition. At higher temperatures, where the
vortices and antivortices are strongly overlapping, a dif-
ferent simplification involving Gaussian fluctuations be-
comes available and we will take recourse to that in the
present paper.

Gaussian computations.—Our calculations can be car-
ried out in two equivalent ways. First, they involve fol-
lowing Aslamazov and Larkin [7] and keeping the
Feynman diagrams that now bear their names and arise
in a Gaussian treatment of the quantum functional inte-
gral. Second, as was noted, e.g., in the case of paracon-
ductivity [1], one can keep Gaussian fluctuations in a
stochastic time-dependent Ginzburg-Landau equation
(TDGL) that is designed to recover the equilibrium
Ginzburg-Landau free energy. At this level, with the
coefficients of the TDGL derived from BCS microscopics
near the mean-field 7,, the two computations are identi-
cal. The TDGL, however, has a second interpretation—as
a model of the critical dynamics traditionally assumed
for superconductors (model A) [8] which should have a
wider validity, with the coefficients no longer constrained
by BCS microscopics. In the following, we will mostly
use the TDGL description, while appealing to the micro-
scopics to justify the form of the current operators [9].

The stochastic TDGL is defined by the Ginzburg-

Landau free energy,
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Equation (2) describes the decay of the order parameter
configuration towards its minimal free energy, inter-
rupted by thermal fluctuations introduced through the
white noise ¢ with correlator
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The relaxation time of the order parameter is 7, and 7/
leads to the precession of the order parameter during the
relaxation process (in this convention, 7// and 7//h are
dimensionless). In the presence of particle-hole symme-
try 7/ = 0.

To calculate the response of the system, Eq. (2) is to be
solved in the presence of the appropriate driving field
(electric field or temperature gradient). Note that a tem-
perature gradient appears in the TDGL both in the
parameter a and in the noise correlator, Eq. (3). At
the level of Gaussian fluctuations, the TDGL is a linear
equation, with a solution of the form (r, ) =
[ dr'di'G(r, t;x', ') (x/, 1), where G is the Green function
of the TDGL. This expression may then be used to cal-
culate the electric and heat currents,

jo=—ilh <¢*(v ~ ie—*A>¢>+c.c., (4)

2m hc
R //9 e* ie*
10 — g * _
j o <<8t i - ¢>¢ <V P A>¢>+c.c. &)

Ullah and Dorsey [10] used precisely the same model.

Currents and fields.—As model A has no conservation
laws, the traditional route to identifying currents is not
available. While it is possible to construct hydrodynamic
arguments that justify the forms in (4) and (5) [11], for
our purposes it is sufficient to appeal to the microscopics
of the Aslamazov-Larkin contribution, and show how the
heat current arises from the appropriate vertex in the
microscopic theory [12].

The microscopic theory is perhaps best recast in a
functional integral approach. By means of the Hubbard-
Stratonovich decoupling of the interaction, the expecta-
tion value of a current operator is expressed as an
imaginary time functional integral over the pairing field,

(j)y= /D(/ID‘_M J >¢,L¢ e~ St (.. ¢)
J [ DYDeSec4:9)

where S.i (0, ¥, @) is the effective action for the pairing
field ¢, in the presence of a potential ¢, and ( j )54 is the
current of a noninteracting Fermi gas driven by electric
and pairing fields. Ignoring the ¢ dependence of (j) is
the Aslamazov-Larkin approximation; the expectation
value is the vertex in their diagram and its long wave-
length, low frequency form is the TDGL current. For the
electric current this was done in the original calculation
[7]. Using the microscopic heat current operator, one
obtains a relation between heat current and electric cur-
rent vertices, J¢ = —wJ¢/2e, independent of disorder.
This corrects a factor of 2 in the calculation of Reizer
and Sergeev [13]. The heat current in the TDGL, Eq. (5),
is now immediate by this result.

To obtain a response to a temperature gradient in the
microscopic theory, one calculates the response to a
“gravitational field,” coupled to the energy density in
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the Hamiltonian, and then uses an Einstein relation to
obtain the response to a temperature gradient [14]. The
microscopic calculation of the Aslamazov-Larkin dia-
grams leads to the same results obtained using the
TDGL approach, Eqgs. (1)—(5), where the response to a
temperature gradient is obtained directly. Ignored here
are the Maki-Thompson and density of state corrections
to the normal state response [1,15].

The transport coefficients are defined by the standard
linear response relations,

(th):(Z i)(-léT) )

The off-diagonal thermoelectric tensors obey the
Onsager relations & = Ta. Below, we calculate the con-
tribution of Gaussian superconducting fluctuations to the
thermoelectric and the thermal conductivity tensors (a5¢
and «5C). We do not consider here the electrical conduc-
tivity tensor 5¢, which has been studied extensively [1].

Before proceeding, we note that particle-hole symme-
try (7 = 0) implies that o35 = 3¢ = k3¢ = 0. In the
following, we break particle-hole symmetry only when
considering these coefficients. In addition, we calculate
the longitudinal coefficients in the absence of magnetic
field B, and the transverse coefficients to linear order in B
(valid for B€? < he/e*). The final results in both two and
three dimensions are presented in Table I. The general-
ization of these results to a layered superconductor using a
Lawrence-Doniach model is straightforward.

The thermoelectric response 3¢ may be calculated in
two ways, either as the heat current response to an electric
field or as the electric current response to a temperature
gradient. In this way Onsager relations are verified. The
result has a logarithmic divergence at 7, in two dimen-
sions [10,13,16].

The calculation of the transverse thermoelectric coef-
ficient a3< raises the issue of equilibrium magnetization
currents. To illustrate this point, consider the result of
calculating both the heat current response to an electric

TABLE L. Contribution of Gaussian fluctuations to thermo-
electric and thermal transport coefficients. Here, €z =
(fic/eB)'/? is the magnetic length, &= /i/(2m*a)'/? is the
Ginzburg-Landau coherence length, T, is a cutoff temperature,
and e¢* = —2e is used. Exact coefficients are given for diverg-
ing terms only (for nondiverging contributions, singular be-
havior is indicated without specifying prefactors).

Two dimensions Three dimensions

SCa

sy €T In(z4) co— e JT— T,
ay é%% « T—IT, ﬁ%% « Tlfrﬁ.
K)Scf co—c(T—T,)In Ti\T) co— (T — Tc)3/2
KS B I () co— VT —T,

*Previously considered in Refs. [10,13,16].
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field and the electric current response to a temperature
gradient (in two dimensions),

£ _ 1 e?BT 1 ®
E, 167 m*cagT — T,’
o1 e*2B< o7 3 ) o)
(=VT), 48mm*cag\(T —T,)> T-T.)

Equation (8) agrees with the calculations of Ullah and
Dorsey [10]. However, the two results, Egs. (8) and (9),
give a different answer for the transverse thermoelectric
response, and are clearly incompatible with Onsager re-
lations. The reason for this apparent discrepancy is that
Egs. (4) and (5) give the total currents in the system,
containing contributions from both transport and mag-
netization currents. In the context of superconductivity,
this issue was raised in Refs. [17,18], but was later ignored
in works regarding fluctuation contributions [10,19,20].
Here we follow Cooper, Halperin, and Ruzin [6], who
considered the general problem of magnetization currents
in magnetothermoelectric transport in detail (they en-
countered it in the context of the quantum Hall effect).

In the presence of a magnetic field, the system has
magnetization currents in equilibrium. These currents
are divergence free, and as a consequence do not make
any contribution to the net current flows that are mea-
sured in a transport experiment. The total currents [cal-
culated by Eqgs. (4) and (5)] are thus a sum of transport
and magnetization parts,

i =32 + j%ue (10)

In the present case, following the arguments of Ref. [6],
the magnetization electric and heat currents which con-
tribute to the total currents in Egs. (8) and (9) are

3= Ju t Jhae

jrenag = C% X (=VT), jr%ag = cM X, (11
where M is the equilibrium magnetization. The fluctua-
tion contribution to the magnetization is found either by
thermodynamics [1] or by calculating the current flowing
in the system in equilibrium in the presence of a varying
system parameter (such as the magnetic field or 7).

By subtracting the magnetization currents, Eq. (11), we
obtain the result for a3 (see Table I), which diverges as
the conductivity, a)scyc o g5C oc (T — T,)d=4/2 As ex-
pected, Onsager relations are recovered by this subtrac-
tion. We note that the correction due to magnetization
currents is not small: In response to an electric field,
the magnetization current accounts for two-thirds of the
total heat current in the weak magnetic field limit. In
response to a temperature gradient, the magnetization
current is more singular than the transport current at 7.

Finally, we consider the thermal conductivity tensor k.
The longitudinal thermal conductivity «$¢ does not di-
verge in any dimension, although it is singular. (In
Ref. [21] a diverging result was obtained due to the wrong
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form of the heat current vertex.) The transverse thermal
conductivity K € has a 10gar1thm1c divergence at T, in
two dlmenswns (similar to a$%). In contrast with an
electric field, a temperature gradlent does not give rise
to a magnetization heat current in the present case.

Cuprate data.—We now compare our results for a3
with experiment. Consider the measurement of the Nernst
effect: The sample is placed in a temperature gradient
(=VT) || % in the presence of a magnetic field B || Z. The
transverse electric field E, is measured in the absence of
any transport electric current. Imposing the condition
j& = 01in Eq. (7) gives the Nernst signal,

E, l 0 — @Oy

: 12
"T(VI)B B o+ o (12)

Taking the values for o and « from the Gaussian contri-
butions, we find that in this approximation the Nernst
effect tends to a constant at T, v(T,) = azs /o35 B.
However, for comparison with experiment, the ﬂuctuatlon
contributions, o-5€ and &5€, should be added to the normal
state contribution, o™ and a”. Moreover, we will consider
temperatures which are not too close to T,, such that
03¢ < ¢" = ¢. Equation (12) may then be written in
the low magnetic field limit as

1a

v="+— , (13)

B a'xx

The normal state Nernst effect v” is generally small due
to a cancellation between the two terms in Eq. (12).

Equation (13) is now used for a comparison with ex-
periment in the low magnetic field limit, presented in
Fig. 1 for data measured on three samples of LSCO [22].
The experimental data shows o (v — v"*), where v and
o, was measured at each temperature, while »" is de-
duced from an extrapolation from the high-temperature
regime. As v" is very small in this material, this extrapo-
lation is expected to introduce a relatively small error.

On the theoretical side, the result for ax\, (see Table 1) is
generalized for a layered superconductor using the
Lawrence-Doniach model,

SC:Lfg_t%b;_ (14)

6wl [T+ 2g,/57

Here, s is the interlayer spacing, and &,, (£.) is the
coherence length in the direction parallel (perpendicular)
to the planes. Note that the only fitting parameters are the
coherence length § (£ = (O)w/T /(T T,)] and the
amsotropy Y= fab/fC In Fig. 1 a3S/B is plotted using
f e =30 A and y = 20 (cf, e.g., Ref [23D).

As this comparison suggests, Gaussian superconduct-
ing fluctuations are sufficient to explain the magnitude of
the observed signal above T, in the low magnetic field
limit in the optimally doped and overdoped samples. Two
questions arise immediately: What is special about the
cuprates and why is the fluctuation contribution to the
Nernst signal dominant at such high temperatures? From
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FIG. 1. Points are o, (v — v") for different samples of

La,_,Sr,CuO, [22], with x = 0.12 (underdoped, T, = 29 K),
x = 0.17 (near optimal doping, 7. = 36 K), and x = 0.2 (over-
doped, T, = 27 K). The solid line is the theoretical value of
a3 /B, using fflob) =30A and an anisotropy of 7y = 20.
The dashed line is obtained using a Hartree approximation
(see text).

our results, the answer to the first appears to lie in their
anisotropy and in their smaller conductivity near T,
which together boost v by 2 orders of magnitude from
values we would predict for bulk Al or Nb, despite their
larger coherence lengths. In this context, it would be
interesting to study low temperature superconductors
with high resistivities, such as the Nb films studied for
fluctuation effects by Hsu and Kapitulnik [24], where our
formula would indicate a Nernst signal comparable to
optimally doped LSCO. In answer to the second question,
we note that the Nernst signal is particularly suitable for a
fluctuation measurement due to the small background
signal in the normal state.

In the underdoped sample, the measured signal is larger
and cannot be explained by Gaussian fluctuations if one
uses the actual T,.. However, this is the pseudogap region
and, in the interpretation considered in this paper, the
actual T, is suppressed from the mean-field transition
temperature TMF by non-Gaussian fluctuations and so a
naive fit is not justified; indeed, there is presumably a
small effect of this kind even at optimal doping which is
unimportant in the region considered in our fit.

The increase in fluctuations with underdoping can be
modeled by a growing quartic term in the Ginzburg-
Landau functional as well as by increased two dimen-
sionality while the increase in TMF needs to be put in
directly. To get a sense of what these would do, we treat
the resulting problem via a self-consistent Hartree ap-
proximation (see, e.g., Ref. [10]), which should be valid to
some extent below TMF. This amounts to replacing a by
the self-consistent solution of @ = a + b{|i|*). That this
is plausible is demonstrated in Fig. 1, where we fit the data
for the underdoped sample (using a two-dimensional
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Hartree approximation, with TMF = 49 K, T, = 200 K,
b/ay = 0.631%/m*, and £Y) = 30 A).
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