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Spin-Dependent Transport through an Interacting Quantum Dot
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We study the nonequilibrium spin transport through a quantum dot coupled to the magnetic
electrodes. A formula for the spin-dependent current is obtained and is applied to discuss the linear
conductance and magnetoresistance in the interacting regime. We show that the Kondo resonance and
the correlation-induced spin splitting of the dot levels may be systematically controlled by internal
magnetization in the electrodes. As a result, when the electrodes are in parallel magnetic configuration,
the linear conductance is characterized by two spin-resolved peaks. Furthermore, the presence of the
spin-flip process in the dot splits the Kondo resonance into three peaks.
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and antiparallel configurations as shown in Fig. 1.
The model Hamiltonian for the F-QD-F system under

consideration can be written as
FIG. 1. Schematic plot of the F-QD-F system considered in
this work.
Spin-polarized transport in magnetic nanostructures,
in particular, single-electron tunneling in ferromagnetic
(F) double junctions, has become a very active area of
research, mainly because of its possible applications in
information storage and processing devices [1]. In these
junctions, the transport properties depend on the relative
orientation of the magnetic moments of external electro-
des. When the central grain in double junctions is small
enough to form a quantum dot (QD), the effects of the
discrete quantized energy levels as well as Coulomb
blockade become significant, which has been considered
theoretically and experimentally in the sequential-
tunneling regime [2–11].

In the low temperature regime, a more subtle effect of
large charging energies is the creation of new states of
many-body character at the Fermi level by the Kondo
effect [12]. For a QD coupled to the normal (N) elec-
trodes, the Kondo effect is well understood in and out of
equilibrium [13–16]. It is a consequence of a special kind
of high-order tunneling process in which the electron
inside the QD tunnels out followed by an electron with
opposite spin tunneling into the QD. The whole system
forms a spin singlet state and the net magnetic moment in
the QD is zero. For the F-QD-F system, a very important
question is ‘‘What are the consequence and character-
istics of the Kondo effect when the magnetic moments of
the electrodes are taken into account?’’

In this Letter we have studied spin-dependent transport
in an interacting QD coupled to two magnetic electrodes
as shown schematically in Fig. 1. Different from the
conventional Kondo problem in a N-QD-N system, here
the characteristics induced by the strong electronic cor-
relation is sensitive to the relative orientation of magne-
tization between the two electrodes, namely, the parallel
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Here the single-particle energy "d is double degenerate in
the spin index �, and the interaction is included through
the Coulomb repulsion U. The first two terms in H rep-
resent the correlated level of the QD, and the third term is
used to describe potential spin-orbit coupling which may
cause the spin rotation of an electron while in the QD. The
spin-flip mechanisms that are relevant to the GaAs-based
QD have been studied recently [17]. The fourth term
describes the free magnetic electrodes and the last term
is the spin-dependent hybridization of the QD to
the magnetic electrodes. Model (1) has been employed
to study the tunnel magnetoresistance (TMR) in the
sequential-tunneling regime [11].

Since the spin quantization axes in the electrodes are
fixed by the internal magnetization of the magnets, the
electrons tunnel into a superposition of spin-up and spin-
down states. This coherence has to be taken into account
when calculating current [18]. Technically, we introduce a
spin rotation transformation d"�#� � �1=

���
2

p
��c" � c#�, in

terms of which the dot Hamiltonian in Eq. (1) is rewritten
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and down-spins, respectively. The current through the left
electrode can be calculated from the time evolution of the
occupation number NL �

P
k� a
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the left electrode using nonequilibrium Green functions.
The result is
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late the nonequilibrium Green functions and express J by
the Green functions Gc of the dot as follows:
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is the linewidth matrix with �
��� � 2�
P

k2
 jVk
�j
2�

��� k
��. The spin dependence of �
��� originates
from the bulk magnetization of the electrodes.

In order to determine the retarded Green functions we
choose the equation of motion method, which was widely
employed to describe an interacting QD coupled to nor-
mal [15,19–21] or superconducting [22,23] electrodes.
The method generates higher-order Green functions,
which have to be truncated to close the equation. In the
infinite-U limit we obtain

GR
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where I is a 2� 2 unit matrix, �b""c���0 � ���0"c�, �R
0 �

�i��L � �R�=2 is the self-energy matrix due to the
tunneling coupling between the electrodes and dot, �R

1
is due to the many-body correlation, with the matrix
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���0 hc��c�i must be calculated self-consistently.
To solve the lesser Green functions G<

c we generalize
Ng’s ansatz [20] to the present case. The interacting lesser
and greater self-energies are assumed to be of the form
�<;> � �<;>

0 B, where B is a matrix to be determined by
the condition �< ��> � �R ��A. This ansatz is exact
in the noninteracting limit (U � 0) and guarantees auto-
matically the current conservation law. As a result one
obtains �< � �<

0 ��
R
0 ��A

0 	
�1��R ��A	. Using this an-
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satz, G<
c can be obtained by Keldysh equation G<

c �
GR
c�<GA

c . Substituting the expressions of the QD’s
Green functions in Eq. (4), defining �< �
�R��L��R��1��R ��A�, and after a straightforward
calculation, one obtains a compact expression of the
tunneling current
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This expression generalizes the current formula in
Ref. [19] to the spin-dependent Anderson model with
additional spin-flip relaxation and allows one to describe
the coherent spin transport through an interacting quan-
tum dot coupled to magnetic electrodes.

In the following calculations, for simplicity we neglect
the energy dependence in the tunneling matrix elements.
The intrinsic linewidth of the dot energies has a form
�
��� � �
���W � jj� with the electrode band width
2W � max�kBT; eV;�
�. We consider two magnetic con-
figurations, namely, parallel and antiparallel configura-
tions. When the magnetic electrodes are in parallel
configuration, we assume that the spin-majority electrons
are up (� �" ) and the spin-minority electrons are down
(� �# ). We further assume that in the antiparallel con-
figuration the magnetization of the right electrode is
reversed. Therefore the spin dependence of the coherent
transport can be conveniently considered by introducing
[11] magnetic polarization factors pL and pR for the left
and right barriers, respectively. �L

"�#�
� �0�1� pL�,

�R
"�#�

� 
�0�1� pR� is for the parallel configuration,
and �R

"�#�
� 
�0�1� pR� for the antiparallel configura-

tion. �0 describes the coupling between the quantum dot
and the left electrode without internal magnetization and

 denotes tunnel asymmetry between the left and right
barriers. In this work we assume the symmetric barriers,
i.e., 
 � 1, pL � pR � p.

The spin-resolved spectral densities are calculated via
the relation ""�#��� � � 1

� Imf�GR
c �"" � �GR

c �## � �GR
c �"# �

�GR
c �#"g. Figure 2 shows the behavior of the spectral den-

sities in parallel and antiparallel magnetic configurations,
which will be used to discuss the conductance results
below. The Kondo resonance for each spin is clearly
manifested by a sharp peak at  � 0 (the chemical
potential is set to be zero) in spectral densities for both
magnetic configurations. However, the peak shape is
sensitive to the magnetic configurations of the electrodes.
As observed from Fig. 2(a), in parallel configuration
the excitation characteristics of the spectral densities
are remarkably different from the normal case in two
prominent ways: (i) the Kondo resonance for down-
spin is enhanced, while the up-spin resonance is
suppressed; (ii) interestingly, the broad single-particle
resonances shift away from the dot level "d, but in oppo-
site directions for different spins. The excitations for the
down-spin shifts towards higher energy, while it shifts to
286803-2
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FIG. 3. Total spectral density (" � "" � "#) in the (a) parallel
and (b) antiparallel magnetic configurations with R � 0:2�0.
Other parameters are the same as in Fig. 2.
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FIG. 4. Linear conductance G as a function of "d in the
(a) antiparallel and (b) parallel magnetic configurations in
the absence of spin-flip process with p � 0:5. Inset indicates
spin-resolved conductance G" and G#. The effect of intradot
spin flipping on the parallel conductance is shown in (c). Linear
magnetoresistance is shown in (d) for several values of
temperature.
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FIG. 2. ""�� (solid line) and "#�� (dotted line) in the
(a) parallel and (b) antiparallel magnetic configurations for
p � 0:5, kBT � 0:02�0, "d � �4�0, and R � 0. Inset of (a)
indicates spin splitting of the dot levels as a function of p.
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lower energy for the up-spin. This splitting is due to the
spin dependence of the interacting self-energy matrix
�R

1 ��, whose real part is different for the up- and
down-spins and sensitive to the values of the spin polar-
ization factor p. From the expression of �R

1 ��, the renor-
malized spin levels e""d� are given by the self-consistent
equation
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where � is the digamma function. The result of Eq. (8) is
shown in the inset of Fig. 2(a), where the dressed dot
levels e""d� are plotted as a function of p. This spin split-
ting of the dot levels in the interacting regime due to the
magnetic properties of the electrodes leads to essential
changes in the transport properties (see below). In addi-
tion, as p increases, the spectral weight of "#�� goes up,
while the spectral weight of ""�� is reduced. Thus a net
magnetic moment is induced by the magnetic coupling. In
286803-3
the case of antiparallel configuration, the spectral den-
sities of two spins are identical and the Kondo peak is not
influenced by the presence of magnetic polarization of the
electrodes [see Fig. 2(b)].

The level dressing and Kondo resonances in Fig. 2(a)
are suppressed when taking into account the spin-flip
process. Remarkably, it shows in Fig. 3(a) that a large
spin-flip transition R splits the original Kondo peak into
three well-defined peaks. As seen from the expression of
�R

1 ��, besides the peak at  � 0, the additional two peaks
appear at  � �R, respectively. It is different from the
antiparallel case with symmetric barriers, in which, as in
the normal case, only the two Kondo peaks evolve from
the presence of the spin-flip process [see Fig. 3(b)].

Figure 4 shows the linear response conductance G as
a function of "d, which can be tuned via the external
gate voltage, for different temperatures. In the antipar-
allel configuration the temperature dependence of the
286803-3
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conductance is similar to the normal case although with a
lower amplitude: the Kondo resonance broadens the con-
ductance peak and saturates the peak amplitude at low
temperatures. In addition, the peak shape remains nearly
symmetric over a broad range of temperatures. In the
parallel configuration, however, the conductance peak
becomes asymmetric with decreasing temperature as
shown in Fig. 4(b). This asymmetry is even more pro-
nounced in the spin-resolved conductance G� [see the
inset of Fig. 4(b)]. The peak splitting in G" and G# is in
the same manner as shown in Fig. 2 due to the magnetic
dressing of spin levels. Thus their superposition results in
a double-peak structure at low temperatures and for large
p as shown in Fig. 4(b) (dotted line). The main peak with
larger amplitude is dominated by the up-spin resonance,
while the other peak with lower amplitude nearly comes
from the down-spin resonance. This novel spin filtering
effect is fully caused by the interplay between the dot
correlation and the magnetic coupling. When spin-flip
transition is included, as shown in Fig. 4(c), the splitting
of the conductance is suppressed.

To describe the dramatic change of G, we define
the linear magnetoresistance as MR � �Gp �Gap�=Gap,
where Gp and Gap are the linear conductance in the
parallel and the antiparallel configurations, respectively.
Figure 4(d) shows the magnetoresistance as a function of
"d for different temperatures. When the dot level is far
from resonance, the magnetoresistances approach the
same value for different temperatures, coinciding with
the noninteracting case. At low temperatures, however,
dramatic changes occur in the resonant tunneling regime.
The magnetoresistance develops into a dip with a negative
value. This means that the linear magnetoresistance sig-
nificantly decreases and even changes its sign at low gate
voltages. In the empty orbital regime where the dot level
is higher than the chemical potential of the electrodes,
the magnetoresistance may be enhanced to a value as
large as 160%.

In summary, using the Anderson model, it is shown
that the magnetic moment arrangement in the electrodes
plays an essential role in spin-dependent transport of a
F-QD-F system in the interacting regime. For parallel
magnetic configuration, the Kondo resonance and QD
energy levels can be controlled by the magnetic polar-
ization in the electrodes. Consequently, the linear
conductance appears as a spin-resolved double-peak
structure and a net magnetic moment emerges in the
QD. The spin-flip process in the QD results in a splitting
of the Kondo peak into three peaks. We expect these
results are useful in exploiting the role of electronic
correlation in spintronics.
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Note added.—After the work was completed, we no-
ticed that the Kondo problem in TMR has also been
considered by Sergueev et al. [24]. However, they did
not discuss spin splitting of the conductance and spin-
flip effects, the essential points in this Letter.
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