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Optical Response of Two-Dimensional Electron Fluids Beyond the Kohn Regime:
Strong Nonparabolic Confinement and Intense Laser Light

M. Samter,1 B. Mehlig,2 and M. Moseler'

"Theoretical Quantum Dynamics, University of Freiburg, 79104 Freiburg, Germany
2School of Physics and Engineering Physics, Gothenburg University/Chalmers, 412 96 Gothenburg, Sweden
(Received 6 September 2002; published 27 December 2002)

We investigate the linear and nonlinear optical response of two-dimensional interacting electron
fluids confined by a strong nonparabolic potential. We show that such fluids may exhibit higher-
harmonic spectra under realistic experimental conditions. Higher harmonics arise as the electrons
explore anharmonicities of the confinement potential (electron-electron interactions reduce this non-
linear effect). This opens the possibility of controlling the optical functionality by engineering the
confinement potential. Our results were obtained within time-dependent density-functional theory. A
classical hydrodynamical model is in good agreement with the quantum-mechanical results.
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Confined, two-dimensional (2D) electronic quantum
systems have been subject to intense theoretical and
experimental investigations during the past two decades
[1]. Emerging from quantum-well structures or charge
layers in modulation-doped semiconductor interfaces,
they are nowadays routinely tailored into quantum dots
[2,3] or strips [4]. Applications range from single-electron
transistors to coherent, tunable light sources for far-
infrared (FIR) spectroscopy [5], a powerful tool for prob-
ing slow vibrational modes in molecular and condensed
matter systems. In light of this application and in order to
design future 2D THz devices, a detailed understanding
of linear- and nonlinear-excitation mechanisms in con-
fined 2D electronic quantum systems is necessary.

In finite 2D systems (such as, e.g., quantum dots or
quantum strips), the linear optical response depends on
the shape of the confinement potential v,. Recent experi-
mental results concern parabolic or near-parabolic
confinement potentials [2] for which the so-called
harmonic-potential theorem (HPT) states that an external
dipole excitation can couple only to a rigid-shift mode
(Kohn mode [6]) at frequency +/K/m* independently of
the excitation strength [7] (m™ is the effective electron
mass and K the curvature of v,). The HPT holds in
classical and in quantum mechanics (QM) [7-9].

In realistic, finite 2D quantum structures, the confine-
ment potential v, is often strongly modulated (e.g., by
inhomogeneous charge distributions) exhibiting a pro-
nounced anharmonicity [10]. Nevertheless, in many ex-
periments, the Kohn mode dominates the response [11]
since for weak external fields, and for low electron den-
sities, anharmonic regions of the confinement potential
are hardly explored. Experimentally it is possible to over-
come the HPT limitations in at least two ways: either by
increasing the density 7 of conduction electrons or by
increasing the intensity of the laser light. This makes it
possible to experimentally investigate the hydrodynam-
ics of the interacting electron fluid, which is expected to
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reveal much more information about the electron dynam-
ics than the rigid-shift response in the Kohn regime.

However, in order to adequately describe the case of
strong fields, the nonlinear response of the conduction
electrons must be considered. The nonlinear response of
atoms [12,13], molecules [14,15], clusters [16], and nano-
tubes [17,18] has been thoroughly investigated. In 3D
quantum dots [19,20], interband dynamics is known to
give rise to nonlinearities (in the form of population
saturation, for example, see also Ref. [21]). By contrast,
little is known about the nonlinear response of finite,
interacting 2D electronic systems to intense laser fields.
Is it possible to observe higher-harmonic (HH) genera-
tion, either due to anharmonicities in the confinement
potential, or as a consequence of nonlinearities in the
hydrodynamics of the conduction electrons? Do existing
THz sources provide sufficient intensity to observe HH
generation in such systems?

Alternatively, one may consider weak fields, (linear
regime) but high conduction-electron densities. How-
ever, most theoretical studies of the linear response either
consider the case of low densities of conduction electrons
where the confinement potential can be assumed to be
parabolic [22], or the other extreme, “classical” confine-
ment by infinitely high potential barriers [23]. How the
nature of the optical response of finite 2D systems
changes as the density of conduction electrons is in-
creased (so that they explore more and more of the an-
harmonic parts of the confinement potential v,) is not
known. Should one expect qualitative differences from
the case of simple metal clusters (their excitation spec-
trum changes with the conduction-electron density [24]
exhibiting, for instance, a strong reduction of Landau
fragmentation for positively charged clusters [25])? How
does the Kohn mode compete with other modes of ex-
citation when the HPT is no longer valid?

Last but not least, to which extent can a classical model
[26] of the (non)linear response be adequate in a regime

© 2002 The American Physical Society 286801-1



VOLUME 89, NUMBER 28

PHYSICAL REVIEW LETTERS

31 DECEMBER 2002

beyond the HPT? Such a model would have to account for
the hydrodynamics of the electron fluid. In the present
article, we address the above questions within a classical
hydrodynamic model, and within a QM approach, time-
dependent density-functional theory (TDDFT) [27].

Model—Our model is described in Fig. 1. We assume
that the confinement potential v is supplied by a 2D rigid
positive jellium charge. If neutralized with charge car-
riers, this model corresponds to a 2D metallic strip [28]. It
can be regarded as a model of modulation-doped semi-
conductor heterostructures embedded in a dielectric me-
dium where a layer of dopant charges corresponds to the
positive background. How these, in combination with
vertical gate voltages, can modify the overall confine-
ment potential is discussed in Ref. [10].

In the following, we show results for two cases, wide
and narrow confinement in the x direction (a = 100ag
and 10ay, respectively); corresponding to very shallow
confinement in the case of a = 100ag, and very strong
confinement for a = 10ay. In GaAs, the widths corre-
spond to roughly 1 um and 100 nm, respectively. The
filling fraction 7 is a parameter (0 = n = 1). For a given
value of 7, the electron charge per unit length (in the y
direction) is taken to be the same in both cases. The
system is subjected to an electric field E(r) = E,(?)é,
pointing in the x direction, €,.

Methods.—Because of translational symmetry in the y
direction, the problem reduces to a one-dimensional self-
consistent one, of determining the dynamics of the elec-
tronic density profile n(x, ) in the potential,

v([n];x, 1) = xE,(t) + vy ([n]; x, 1)
+ 2[dx’ [n(x, 1) — ny(x")] log|x — /|

Our QM solution [29] to this problem relies on the

TDDFT [27]; the exchange-correlation potential
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FIG. 1. (a) Schematic representation of a 2D electron gas in
the x-y plane, confined further in the x direction by a positively
charged (charge density n), rigid jellium strip oriented along
the y axis, of width a. A filling fraction is defined by = 7 /n,.
(b) Electrostatic potential vy(x) [arbitrary units] of the jellium
charge (solid line) for a = 10aj; and ry = 0.47 [ a.u.]. Reduced
atomic units are used throughout, aj is the reduced Bohr
radius. Around x = 0, the potential is harmonic, vy(x) =
(K/2) x> (dashed line) with K = 8ny/a. For large values of x
(Ix| > a/2), v, grows logarithmically.
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v ([n]; x, t) was treated in the adiabatic local-density
approximation [30,31]. The QM wave-packet dynamics
was started from the ground state of the unperturbed
system (with E, = 0), ie., the solution of the static
Kohn-Sham equations [32].

We have compared our TDDFT results with a classical
approach: The classical hydrodynamics of the electron
fluid (neglecting v,.) was solved in a comoving Lagrange
frame [33], represented by a layer of infinitely thin rods
of width dx with initial positions x, infinitesimal charges
n(x, 0)dx (per unit length), and velocities u(x, ), evolving
according to Newton’s law d,u(x, t) = —o,v(n];x, 7).
The classical wave-packet dynamics was started from
the stationary solution n(x) of 9,v([n];x,0) = 0. It was
found by relaxing an initial Gaussian density profile with
suitably chosen Stokes damping. Since the static screen-
ing length of a 2D electron gas is considerably larger than
the interparticle distance, this classical hydrodynamical
approach is expected to work well. It neglects exchange,
correlation, and shell effects.

Ground-state properties.—Classical and quantum-
mechanical ground-state density profiles are shown in
Fig. 2. For the wide system, the agreement between clas-
sical and QM profiles is satisfactory except for small
values of 1 (where the QM profile is Gaussian while the
classical one is elliptic). In the narrow system, the dis-
crepancies are larger. For large 7, electron spillout domi-
nates the QM profile. In both cases, the QM profiles
exhibit Friedel oscillations. Such interference effects are
necessarily absent in a classical approach.

Linear response.—The linear response is obtained by
applying a low-intensity white-light pulse E,.(f) =
Ey8(1). A value of E, = 0.001 [ a.u.] was verified to be
sufficiently small to remain within the regime of linear
response, for the parameters considered here. We have
calculated the dipolar strength function S(w) =
Qw/Eym)Imd(w). Here, d(w) is the Fourier transform
of the dipole moment.

In Figs. 3(a) and 3(b), our results for S(w) are shown.
For low conduction-electron densities ( = 0.1), nearly
all dipolar strength is in the Kohn mode for both the wide
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FIG. 2 (color online). (a) Classical (black lines) and
quantum-mechanical (green lines) ground-state charge-density
distributions for a = 1004y, for different values of the parame-
ter i (charging fraction), from n = 0.01 to n = 1. (b) Same,
but for a = 10aj.
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FIG. 3 (color online). (a) Quantum-mechanical (green lines)
and classical (black lines) linear response for ¢ = 100ay and
n = 1. Inset: Same, but for n = 0.1. (b) Same, but for a =
10ay and n = 0.1, 1. (c)—(e) Snapshots of density profiles for
a = 100ay and n = 0.1, 0.5, and 1. For 5 = 0.1, the profile is
dominated by the Kohn mode (dashed line). (f) Position of the
first plasmon resonance as a function of 7 for a = 100ay.
Shown are classical (X) and quantum-mechanical results (CJ).

and the narrow system, as expected. The classical and
QM strength functions are almost indistinguishable [in-
sets of Figs. 3(a) and 3(b)]. As the filling fraction is
increased, higher plasmon modes develop in the case of
the wide system [Fig. 3(a)]. Classical and QM results
agree fairly well, except for large values of w, where
the classical plasmon dispersion is found to underestimate
the QM result. The results for the narrow system at n = 1
are very different [Fig. 3(b)]: Here we observe strong
Landau fragmentation [34] of the main peak, as in the
case of (three-dimensional) simple metal clusters [25].
Further, all higher-order plasmon modes disappear. The
classical approximation is inadequate in this regime.
What is the spatial profile of the modes observed in
Figs. 3(a) and 3(b)? The Kohn mode (small 7) is a rigid-
shift mode. As 1 approaches unity in the wide system, it
evolves into the first plasmon mode, a combination of a
rigid-shift and a hydrodynamic mode (higher modes are
expected to be hydrodynamic modes for all values of 7).
These two modes of oscillation correspond to Goldhaber-
Teller and Steinwedel-Jensen modes in atomic nuclei
[35]. Figures 3(c)—3(e) show snapshots of QM density
profiles for three values of 7 in the wide system. By virtue
of selection rules, n(x, r) — n(x) is antisymmetric with
respect to reflection at x = 0. For small 7, the rigid-shift
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mode dominates and n(x, ) — n(x) o —x near the origin
[note that the rigid-shift profile has the time dependence
n(x, 1) = n[x — x.m (1), 0] where x.,, is the center-of-
mass of the profile]. As 7 increases, hydrodynamic modes
emerge [36]. They correspond, approximately, to standing
waves with wave vectors ¢ = 7v/a withv =0, 1, ... and
frequencies w%(q) = 27mngy/(em*) q (e is the dielectric
constant). Here, wf)(q) is the plasmon dispersion for a
spatially extended 2D electron fluid, the confinement is
modeled by assuming that the wavelength corresponding
to ¢ is given by the width a. Figure 3(f) shows how the
position of the first (v = 1) plasmon resonance evolves as
a function of 7. For small 5, the Kohn limit is reached, as
expected. As 7 is increased, the position evolves, albeit
not quite to the value wj(q=2m/a)=2m"ny/
(aem™). This is due to the fact that, at n =1, the
profile of the density oscillations is not quite sinusoidal
(see also Ref. [23]): Sinusoidal modes do not diago-
nalize the problem; their interaction gives rise to a fre-
quency shift.

Nonlinear response.—The system was subjected to an
intense monochromatic light wave of amplitude E, and
frequency w, (switched on slowly, on the time scale of a
few cycles). The laser intensities were chosen so as to
avoid ionization of the system, not exceeding 10® W /cm?
(well within the range of standard free-electron lasers).

Figure 4(a) shows classical and QM results for the
dipolar power spectrum |d(w)|*> (see Ref. [16]) in the
narrow system. We observe excellent agreement between
classical and QM results. Further, we observe HH at odd
multiples of w;. These HH are due to the electrons
exploring the anharmonic potential v, (cf. scattering of
electrons off the Coulomb potential in ionized atoms).
The parameters (g = 0.1 and w; = 0.05[a.u.]) allow
for large excursions of n(x, r) into the anharmonic regions
of v.

Our observations show that confined, interacting 2D
electron fluids do exhibit HH spectra, albeit not as promi-
nently as in single-electron systems such as atoms in
strong laser fields [13]. We surmise that the hydrodynamic
modes arising from the nonlinearities in the fluid
dynamics dampen the center-of-mass motion and its ac-
celeration, reducing the intensity of HH. We have verified
that a substantial center-of-mass acceleration is observed
when the nonlinear electron-electron interactions are
switched off during the laser pulse, resulting in HH of
considerably larger strength [Fig. 4(a)]. This implies that
independent-electron models of 2D interacting electron
fluids are likely to overestimate the strength of the non-
linear response. Our QM results are not sensitive to the
presence/absence of the exchange-correlation potential,
indicating that v, has little influence on HH generation.

Following the strong external driving, the density pro-
file n(x, r) moves with the frequency wy, but not rigidly:
In the narrow system, the width of the profile changes
periodically (breathing mode), as shown in Figs. 4(b) and
4(c). This mode dampens the rigid-shift motion of the
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FIG. 4 (color online). (a) Nonlinear response for a = 10ag,
o, = 0.05[a.u] (0.13 THz), n = 0.1, and E; = 3 [au.] (in-
tensity 1.38 X 10® W/cm? ). Shown are classical (black lines),
TDDFT (green lines), and quantum-mechanical independent-
particle results (circles). (b) Density profile for the same
parameters as in (a) at t = 22.8 ps. (c) Time evolution of the
width o of this density profile (the arrow indicates ¢ =
22.8 ps). (d) 6n = nlx — xy (1), t] — n(x) for a = 100ay, w; =
0.45[auw], =05, and E,=0.5[au] (intensity 3.8 X
10* W/cm?), t = 4.5 ps.

electron fluid (cf. Ref. [36] for a similar effect in a
circular, anharmonic quantum dot).

In the wide system (at n = 0.5), electron-electron in-
teractions give rise to small-amplitude oscillations added
to the otherwise rigidly moving density profile [Fig. 4(d)].
The time dependence of the center-of-mass motion is
found to be in good agreement with the classical model.
In the small-amplitude oscillations, by contrast, a phase
shift is observed [38]. Finally, we emphasize that the
selection rules of the linear case no longer hold [Fig. 4(d)].

Conclusions.—We have analyzed the linear and non-
linear response of confined 2D, interacting electron fluids
to laser light. Our results may be summarized as follows:
First, nonparabolically confined interacting 2D electron
fluids may exhibit HH spectra under realistic experimen-
tal conditions. HH are due to the electron fluid exploring
anharmonicities in the confinement potential. It is found
that electron-electron interactions dampen this effect.
Second, with the exception of small systems at high
electron densities (where single-particle excitations inter-
act with the collective modes giving rise to considerable
Landau fragmentation of the plasmons), a nonlinear clas-
sical hydrodynamical model provides a very good ap-
proximation to the linear and nonlinear response
obtained within the TDDFT; exchange-correlation ef-
fects have a negligible influence. It would be of interest
to ascertain to which extent the nonlinear response of
geometrically more complex systems such as nanotubes,
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quantum rings, clusters, or Cgy can be modeled by the
classical approach used here.
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