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Filling Transition: Exact Results for Ising Corners
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We obtain the exact solution for a two-dimensional rectangular Ising ferromagnet forming a corner
with a surface field applied to the spins on edges. We establish the existence of the filling transition and
give the condition for the filling temperature. We discuss the basic properties of the transition.
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case (b), this field is reversed both on the edge x � 1 for
y � 1; . . . ; m and on y � 1, for x � 1; . . . ; n. Thus, in y02m�1�k� � ei��k�e�i�m�1�k � ei�

0�k�eimk; (6)
Adsorption of a fluid on solid substrates equipped with
modified geometrical structure has become increasingly
important for many modern applications and technolo-
gies [1]. For instance, the surface of solid substrates can
be channeled and grooved by mechanical and electro-
chemical means. Moreover, the chemical behavior result-
ing from noncovalent bonding can be modulated down to
the nanoscale using microlithographic technique [2,3].
Recent studies, both experimental and theoretical, have
shown that such systems have radically altered wetting
characteristics [4], an example of which is the filling of
wedges or corners. Phenomenological modeling shows
that the wedge fills with the liquid at a lower temperature
than that at which the liquid wets an otherwise identical
flat surface. In fact, one can adjust the opening angle of
the wedge to obtain filling at any temperature which
solves �c�T� � �, where � is the wedge tilt angle and
�c�T� is the contact angle of a liquid drop on the planar
substrate [5–8]; the condition for planar wetting is
�c�T� � 0. A considerable amount of work has been
done recently on fluctuation effects, scaling regimes,
and universality classes of filling transitions and how
these compare with wetting [9–11]. There are conjectures
on the universality of the filling transition and the behav-
ior of the interfacial height probability distribution and
other quantities based on heuristic scaling arguments and
approximate interfacial models in the limit of small tilt
angle. However, the evidence for the occurrence of the
filling transition in a model system of a fluid at a mo-
lecular scale in the wedge geometry is still lacking, not to
mention detailed verification of the predictions [12]. Here
we propose a two-dimensional lattice gas model of a fluid
confined by adsorbing walls forming a corner which can
be solved exactly.We demonstrate existence of two differ-
ent transitions taking place below the wetting tempera-
ture Tw of a single wall, one of which can be identified
with filling.

Consider a rectangular lattice N �M with spins
��x; y� � �1 located at the sites of the lattice and inter-
acting via coupling K � �J > 0. We consider two cases.
In case (a), a field h is applied to the spins on all edges; for
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case (b) a domain wall, or interface, running from
�n; 1� to �1; m� which can be bound to the surface by a
suitable choice of h. Alternatively, it can gain entropy by
choosing more direct routes. The standard edge wetting
problem, having the interface beginning and ending on
the edge, but far from the corner, has been solved exactly
[13]. We establish an analogous phase transition for the
corner case, beginning with the thermodynamics.

The incremental free energy of the domain wall is a
canonical partition function ratio for the boundary
conditions (a) and (b). We calculate this exactly using
the transfer matrix technique. We consider the transfer
in the �1; 0� direction and use the spectrum of the transfer
matrix with boundary fields h [14]; this has been obtained
by the extension of the method of Kaufman [15] which we
give in lattice-fermion language. For the symmetrized
transfer matrix V 0, we have

V 0 � exp

�
��1=2�

X
k

��k��2X�k�yX�k� � I

�
; (1)

where ��k� is Onsager’s function given by

cosh��k� � cosh2K cosh2K� � cosk; (2)

with

exp��2K�� � tanhK: (3)

The operators X�k� satisfy Fermi anticommutation rela-
tion �X�k1�y; X�k2�
� � �k1;k2 and �X�k1�; X�k2�
� � 0.
The X�k� are given by

X�k� � Nk

X2M�1

m�0

y0m�k��m; (4)

where Nk are normalization factors, with

�2m � �i�fym � fm�; �2m�1 � fym � fm: (5)

fm � Pm�1��x
m � i�y

m�=2, P 0 � 1, Pm �
Q

m
j�0���

z
j�

which is the Jordan-Wigner transformation of the spin
operators, ��

m, � � x; y; z, to fermion operators. Here the
basis for the transfer matrix representation is given by
eigenvectors of �x

j . The y0m�k� are
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iy02m�k� � ei��k�ei�
0�k�e�i�m�1�k � eimk (7)

for m � 1; . . . ;M; y00�k� and y02M�1�k� are given later.
Thus, there is a phase shift between even and odd lattice
points where �0�k� is an angle of the Onsager hyperbolic
triangle [16]. The boundary bonds are incorporated by
combining elements with opposite wave numbers as sug-
gested by the reflection symmetry, with a phase shift of
expi��k� where

ei��k� � ei�
0�k��weik � 1�=�eik � w�: (8)

Here w is a usual wetting parameter w �
exp2K�cosh2K� � sinh2K� coshh� [13]. The k values are
quantized by expiMk � s expi��k� with s � �1 being
determined by the reflection characteristics of the asso-
ciated y0�k�. Finally, the boundary values of the eigen-
vectors y0 are given by

y00�k� � i
sinh2h coshK�

1

sinh��k�
�ei��k� � ei�

0�k�eik�; (9)

with y02M�1�k� � isy00�k�. The first deduction, essential for
the physics, is that forw > 1 there are two asymptotically
degenerate imaginary wave numbers k � iv�
A�v�e�vM, where ev � w defines v and A is some M
independent real function of v.

The following remarks, which will be crucial in under-
standing corner filling, refer to the strip geometry. The
incremental free energy per unit length associated with a
domain wall running from �1; 1� to �n; 1� is, as M ! 1,
n ! 1 given by fx � ��iv� [13]. An analogous calcu-
lation for a domain wall crossing the strip with termi-
nations at �1; 1� and �n;M� with n;M proportional and
large is

F� n��iv� �Mv�O�1�: (10)

Both of these results are a direct consequence of the
existence of imaginary wave number modes.

We anticipate physically that local thermodynamic
equilibrium and overall free energy minimization imply
that the interface will subtend the contact angle �c with
the walls so that (10) could equally well be written up to
leading order as

F�M csc�c#��c� �M�1� cot�c�fx; (11)

where fx is the interfacial free energy of a portion of the
interface pinned to the wall, as shown in the previous
paragraph. Using the modified Young’s equation
#��� cos�� #0��� sin� � fx and the implicit form of
the angle-dependent surface tension [17] #��� �
cos���ivs����� sin�vs��� with ��ivs���� � i tan�
shows, with some effort, that (10) and (11) are indeed
the same.

The final fact needed to set the stage for our new results
is to obtain the probability Pm of a pinned interface
passing at the distance m from the wall, using the ‘‘do-
main wall state’’ idea [18] extended to this new geometry.
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The domain wall state, which localizes the interface up to
the scale of the bulk correlation length, can be taken as
jmi � �2m�1j�i, from which it follows that

Pm � jh�jX�c��2m�1j�ij2; (12)

with X�c� given by (4) with k � iv. This form factor is
easily obtained as before giving Pm � exp��2mv�. By
appealing to the angle-dependent surface tension and
contact angle formulas, were we to calculate Pm by
Helmholtz fluctuation theory, our result for Pm is gener-
ated by a blob of adsorbed matter of isosceles triangular
form with the apex at �0; m� and feet at ��m cot�c; 0�;
the incremental free energy �f�m� � �m cot�cfx �
m csc�c#��c�; some analysis shows that �f�m� � 2mv
as it should be. Moreover, the inverse length scale 2v
agrees exactly with the film thickness of Ref. [13]. This
series of remarks summarizes the wetting transition on an
edge using the parallel transfer matrix, rather than the
perpendicular one; it also brings in the contact angle �c
in a natural way [19].

We return to the boundary conditions for the corner
given in the second paragraph of this Letter. Imagine a
domain wall starting at �1; m� and ending at �n; 1� with
n ! 1 first. Clearly, there will be a depinning transition
off �1; 1� atw � 1, or T � Tw. What is considerably more
surprising is that there is a phase transition in which the
domain wall on �1; m� is depinned as m ! 1 at T � T1
for T1 < Tw (the inequality is strict); for T1 < T < Tw,
the interface forms a wedge at the corner, the base angle
of which can be calculated.

Such a problem is readily formulated in transfer matrix
language. The incremental free energy is

e�F � lim
M!1

h�1j�2m
~V1V1X�c�yj�i

h�1j ~V1V1 j�i
; (13)

where ~V1V1 � expi#
P

M
j�1 �2j�1�2j, j�1i is a boundary

state with all spins parallel in the x direction and # �
2h� � K� , where h� is dual to h. The extra difficulty is
determination of the form factors when the in and out
states are different; this has already been encountered in
the corner problem with free boundaries [20], but here it
is considerably more complicated, even though the basic
technique is, once seen, rather obvious. First, we note that
~VV�1
1 �2m

~VV 1 � i�2m cosh# � �2m�1 sinh# and then we de-
velop the right-hand side of (13) in terms of the Xy�k� and
X�k�. This gives

e�F � lim
M!1

X
'>k>�'

Nkeimk�cosh# � ei�
0�k� sinh#�

�
h�1j ~V1V1X

y�k�Xy�c�j�i

h�1j ~V1V1 j�i

� Nce�mv�cosh# � ei�
0�v� sinh#�: (14)

To evaluate the h�1j ~V1V1Xy�k�Xy�c�j�i, we consider the
equation h�1j��2j � i�2j�1� � 0 for j � 1; . . . ;M; this
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follows because j�1i has all spins parallel in the x direction. The next step is to evaluate ~V1V1
�1��2j � i�2j�1� ~V1V1 and then

to expand the result in the Xy�k� and the X�k�. This givesX
0<k<'

Nk�e�ijkei�
0�k� � eijk�(�k� � h�1j ~V1V1Xy�k�Xy�c�j�i � �Nc�e�jv � se��M�j��(1��iv�; (15)
where (�k���tanh#�eik�ei�
0�k���1�eikei�

0�k� and
(1�k���tanh#�e�ik�e�i�

0�k���1�e�ike�i�
0�k�. Equa-

tions (14) and (15) can be simplified further by noting
that X��k�� exp�i�k���k���0�k�
X�k�, givingX

�'<k<'

N2
ke

ijkKM�k���Nce
�jv(1��iv�; (16)

where

KM�k��
(�k�
Nk

h�1j ~V1V1X
y�k�Xy�c�j�i

h�1j ~V1V1 j�i
: (17)

Multiply (16) by z�j1 with jz1j>1 and sum, getting as
M!1 with K�z��K1�z�

1

2'i

I
jzj�1

K�z�dz
z�z1

�
2Ncw

�1(1��iv�

z1�w�1 : (18)

This equation determines only the part analytic outside
the unit circle in a Laurent decomposition of K. This is
supplemented by the equation K�z�1���ei��k�K�z�
which follows from reversing k; the Wiener-Hopf method
gives the unique result:

K�z���
2Nc(1��iv��z

2�1�

�z�w�1���z�A��z�B�
1=2
; (19)

where A� exp2�K�K�� and B� exp2�K�K��. Using
the same k!�k idea, (14) becomes

e�F�
1

4'

Z '

�'
d!eim!�cosh#�sinh#ei�

0�!��
K�ei!�
(�!�

�e�mv�cosh#�sinh#ei�
0�iv��: (20)

Thus, to obtain limm!1F=m, we must examine the sin-
gularities of the integral in (20). The branch cut at
!� ilogB generates the bulk phase correlation length.
It is always dominated by either the singularity !� iv or
that generated by zeros of (�!�. A detailed analysis
locates them as simple poles at !� ilog��iv�. It follows
that the incremental free energy per unit length is

f�min���iv�;v�; (21)

and that there is a first order phase transition at the locus
of points in the �h;K� plane where, below the transition,
the free energy behaves as ��iv�, indicating that the
domain wall is bound to both edges meeting at the corner,
whereas above the transition, the free energy behaves
as v, indicating a domain wall unbound from the vertical
wall crossing the lattice at the contact angle at the hori-
zontal edge. At this transition point, the contact angle is
'=4; this angle decreases on increasing the temperature,
286101-3
vanishing when v�0 (the usual wetting transition). The
mathematical mechanism for this first order transition is
the crossing of poles on the imaginary ! axis.

The basis for investigating the filling transition is to
take a domain wall running from �n; 1� to �1; m� with the
wetting condition on each edge, secured by taking w > 1
and now to take n;m to infinity together. Analysis of this
requires the full limiting two-point form factor

K�k1; k2� � lim
M!1

(�k1�(�k2�h�1j ~V1V1X
y�k�Xy�c�j�i

N�k1�N�k2�h�1j ~V1V1 j�i
:

(22)

This has been obtained by a conceptually straightfor-
ward generalization of the vacuum condition trick above,
the details of which will be given elsewhere. The con-
clusion is

K�k1; k2� �
(�iv�
(��iv�

K�eik1�K�eik2��1� S�eik1 ; eik2�
;

(23)

where

S�z1;z2��
�e���iv��z2��e

���iv�z2�1�

�e���iv��w��e���iv��w�1�

�z1�w��z1�w�1�

�z1�z2��z1z2�1�
:

(24)

That this result is, in fact, antisymmetric in k1 and k2, as
it should be, is a most significant test since the calculation
places k1 and k2 on an entirely different footing. The
singularity structure of (23) is of great relevance. There
are simple poles at k1��k2 which produce the desired
asymptotics, ‘‘bulk’’ branch points and singularities at
kj��i��iv�, j�1;2. The latter ones arise because
(�i��iv�
�0; they give the required exp�m��iv� term.
A detailed inspection then shows that the free energy is

F��m�n���iv��O�1�: (25)

In addition to these simple pole terms, there is also a
saddle point path. On raising the temperature, the pole at
k� i��iv� crosses this path. The integrands in the single
integrals resulting from the k1��ik2 residues mentioned
above contain a factor exp��n��k�� imk
; the saddle
point mentioned above is located at the solution of �0�k��
im=n. To see what relevance this has, the location of the
domain wall can be found by using the domain wall states
jmi again. The probability of a domain wall passing
through �m1;n1� is
286101-3
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Pm1;n1 �
h�1j ~V1V1

~RmRm�V
0�n1 jm1ihm1j�V

0�n�n1 ~R0R0 j�i

h�1j ~V1V1
~RmRm�V

0�n ~R0R0 j�i
: (26)

This is developed by expanding the jmi and ~RmRm �
~V�1
1V
�1
1 �0

~V1V1 in terms of the Xy�k� and X�k�. The second
matrix element in (26) generates the leading term
�exp���n�n1���iv��m1v
. For the first matrix ele-
ment, some detailed calculation gives the leading behav-
ior exp��m��iv��m1��iv��n1v
. Thus, the overall
decay is

Pnm�exp��n�m��v���iv�
: (27)

The factor premultiplying the exponent is independent of
m and n; this is because the asymptotic form is generated
by poles in the integrand. The result for Pnm shows that it
is constant on lines normal to �1;1�, and the inverse length
scale is ‘�1�v���iv�, where expv�w. Thus, from (2),
‘�1 will vanish when 2coshv� cosh2Kcosh2K�, that is,
when expv� sinh2K. Coupling this with expv�w gives
a transition at K�Kf where

cosh2h� cosh2Kf�e�2Kf sinh22Kf; (28)

confirming a conjecture [11]. Further, as K!K�
f , ‘�

�K�Kf�
�1. There is additional physical meaning: for

an otherwise free interface inclined at an angle '=4,
the surface tension satisfies #�'=4�� ���ivs��vs
=

���
2

p

with �0�ivs�� i as the saddle point condition; this im-
plies that vs���ivs� and expvs� sinh2K. Thus, at the
point where the length scale ‘ diverges, the binding free
energy at the wall and #�'=4� allow the bound inter-
face to detach on each edge and cross at exactly an angle
'=4, producing interface fluctuations which are much
larger in spatial extent than the capillary ones encoun-
tered heretofore. Thermodynamically, the transition is of
first order, but the corner fills with adsorbate continuously
as K!K�

f .
In summary, we have established the existence and

basic properties of a corner filling transition in a planar
lattice gas model by exact solution of the equilib-
rium statistical mechanics. The mathematical details,
which are extensive and rather technical, will be given
elsewhere.
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