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Fidelity Decay as an Efficient Indicator of Quantum Chaos
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We demonstrate that a system’s rate of fidelity decay under repeated perturbations may be measured
efficiently on a quantum information processor, and analyze the conditions under which this indicator is
a reliable probe of quantum chaos. The type and rate of the decay are not dependent on the eigenvalue
statistics of the unperturbed system, but depend on the system’s eigenvector statistics in the eigenbasis
of the perturbation. For random eigenvector statistics, the decay is exponential with a rate fixed by the
variance of the perturbation’s energy spectrum. Hence, even classically regular models can exhibit an
exponential fidelity decay under generic quantum perturbations. These results clarify which perturba-
tions can distinguish classically regular and chaotic quantum systems.
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RMT statistics for the system eigenvector components,
expressed in the eigenbasis of the perturbation operator,

versing the initial state preparation j fi � Uy
o j �n�i. The

magnitude of O�n� is then determined from sampling the
Over the past two decades, a great deal of insight has
been achieved regarding the manifestations of chaos and
complexity in quantum systems. We are interested in the
problem of identifying such signatures in the context of
quantum simulation on a quantum information processor
(QIP). It is known that a QIP enables efficient simulation
of the dynamics of a wide class of quantum systems [1,2].
In the case of quantum chaos models, quantum simulation
provides an exponential speedup over direct classical
simulation [3–5]. Recently, the quantum baker’s map has
been implemented using a nuclear magnetic resonance
QIP [6]. These developments highlight the importance of
devising efficient QIP methods for the measurement of
quantum chaos signatures and related properties of com-
plex quantum systems.

Perhaps the most established signature of quantum
chaos is given by the (nearly) universal correspondence
between the eigenvalue [7] and eigenvector [8] statistics
of quantized classically chaotic systems and those of the
canonical ensembles of random matrix theory (RMT).
Unfortunately, direct detection of these spectral signa-
tures is algorithmically inefficient by any known tech-
nique. However, following the original observation of
Peres [9], some recent work has demonstrated that, under
sufficiently strong perturbation, the fidelity exhibits a
characteristic exponential decay in the case of classically
chaotic quantum systems [10–13]. Below, we demonstrate
that this characteristic decay may be measured by an
efficient algorithm, and analyze in detail how the obser-
vation of this decay may be applied as an indicator of
canonical RMT statistics (quantum chaos) in the unper-
turbed system.

By first considering RMT models, we show that
Wigner-Dyson fluctuations in the system eigenvalue spec-
trum are not necessary to produce this characteristic
decay. More importantly, we find that the canonical
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are sufficient to produce the characteristic exponential
decay. These observations are checked in the case of a
dynamical model, where we demonstrate that an expo-
nential fidelity decay can arise not only for a classically
chaotic system, but also for a classically regular system
under a generic choice of perturbation. Our analysis im-
plies specific restrictions that must be imposed on the
choice of applied perturbation operator in order to extract
useful information about the statistical signatures of
quantum chaos in the unperturbed system.

The aim of this Letter is to characterize certain static
properties of a unitary map, U, by observing the rate
of divergence between a fiducial Hilbert space vector
evolved under this map, j u�n�i � Unj �0�i, and the
same initial vector evolved under this map but subject
also to a sequence of small perturbations j p�n�i �
�UpU�nj �0�i, where Up � exp��iV�� is some unspeci-
fied perturbation operator and n denotes the number of
iterations. The fidelity,

O�n� � jh u�n�j p�n�ij
2; (1)

provides a natural indicator of this divergence. The value
of O�n� may be determined by an efficient algorithm on a
QIP as follows. We start by preparing the fiducial state
j �0�i � Uoj0i

�nq , where nq is the number of qubits re-
quired to span the system’s Hilbert space N � 2nq . As
shown below, the choice of fiducial state is not critical and
the computational basis states, which are simplest to
implement, are a convenient set. After applying the se-
quence �Uy�n�UpU�n, the system register contains a final
state j �n�i. The circuit implementation of U requires
only Poly�nq� operations for the simulation of a wide
class of quantum systems to arbitrary accuracy [1–5].
Here we observe that jh p�n�j u�n�ij � jh �n�j �0�ij �
jh fj0ij, where the state j fi is obtained by time re-
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population of the state j0i. The entire algorithm therefore
scales as Poly�nq�.

Recently, Jacquod and co-workers [11] observed that,
for j �0�i � jvoi, an initial eigenstate of U with eigen-
phase �o, the fidelity relates to the local density of states
(LDOS), ���o ��0

m� � jhvojv0mij2, via Fourier trans-
form,

O�n� �

��������
X
m

���o ��0
m� exp��i��o ��0

m�n�

��������
2

: (2)

In the above, jv0mi are eigenstates of the perturbed map
UpUjv0mi � exp��i�0

m�jv0mi. These observations locate
the decay of O�n� in an existing theoretical framework.
In the nonperturbative regime �=
 * 1, where �2 �
�2V2

mn denotes a typical off-diagonal matrix element
and 
 is the average level spacing, previous work suggests
that when the perturbed system is complex the LDOS is
typically Lorentzian [14,15]:

���o ��0
m� /

�

��o ��0
m�

2 � ��=2�2
; (3)

with width � � 2��2=
 determined by the Fermi golden
rule (FGR). From (2) and (3), one expects the exponential
decay,

O�n� ’ exp���n�: (4)

The onset of the exponential decay (4) has been con-
firmed recently in a few classically chaotic model systems
[11,12], though the rate is not always given by the golden
rule [10,16]. However, in the case of integrable U, the
situation is less clear since under some perturbations
the LDOS is known to also take on a Lorentzian
shape [15,17].

Below, we examine which statistical properties of the
unperturbed system lead to the FGR decay and how this
characteristic decay depends on the choice of perturba-
tion operator. This approach is motivated by the context of
QIP simulation, in which the eigenbasis of the perturba-
tion may be mapped onto an arbitrary basis of the simu-
lated system [18]. Our choice of perturbation eigenvalue
structure is also motivated from the perspective of quan-
tum control studies. Specifically, we consider

Up � 
nq
j�1 exp��i��

j
z=2�; (5)

where �z is the usual Pauli matrix and (5) therefore
corresponds to a collective rotation of all the qubits by
an angle �. Equation (5) is a model of coherent far-field
errors [19], and for this type of error model a better
understanding of the fidelity decay is a subject of intrinsic
interest.

As a first test of the LDOS/FGR framework in the case
of the qubit perturbation (5), we evaluate the fidelity
decay for a map U � UCUE drawn from the circular
unitary ensemble (CUE). These matrices form an estab-
lished model for classically fully chaotic time-periodic
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systems (without additional symmetries) since these sys-
tems (almost always) exhibit the same characteristic
(Wigner-Dyson) spectral fluctuations and eigenvector sta-
tistics as the CUE [20]. The randomness of the system
eigenvectors enables a system-independent estimate of
the rate � of the FGR decay. Since the components of
random eigenstates are distributed uniformly over the
basis states and uncorrelated with the distribution of
eigenvalues, the second moment of the matrix elements
Vmn may be directly evaluated,

V2
mn � �2=N; (6)

assuming � � 0 and where �2 � N�1
PN
i�1 �

2
i denotes

the variance of the eigenvalues of V. As a result, the
rate of the FGR decay is determined by the eigenvalues
of the perturbation,

� � �2�2 ; (7)

where we have used 
 � 2�=N. For the qubit perturba-
tion (5), the variance of the eigenvalues has a simple
form,

�2 �
1

N

Xnq
k�0

�
2k� nq

2

�
2
C
nq
k ; (8)

where the C
nq
k are binomial coefficients. Using our RMT

estimate (7), for nq � 10, the rate is

� � 2:50�2: (9)

While a CUE map may be generated on a QIP using the
gate decomposition devised in Ref. [21], for our numeri-
cal study we construct U � UCUE directly from the
eigenvectors of a random Hermitian matrix. Since com-
putational basis states are easiest to prepare in the QIP
setting, we consider the fidelity decay for both single
computational basis states and averages over 50 such
states. The behavior of the fidelity decay for a matrix
typical of CUE is displayed in Fig. 1. The three pertur-
bation values displayed in the figure are chosen near the
onset of the nonperturbative regime (� > 0:1), and it is
evident that the fidelity decay even for individual compu-
tational basis states exhibits FGR decay (4) at the ex-
pected rate. The FGR decay persists for a time scale
��1 log�N� until saturation at a time average that de-
creases as 1=N.

We next consider O�n� for the Gaussian unitary en-
semble (GUE) in order to clarify the relationship between
the FGR decay and the distinct statistical features of
RMT that represent signatures of quantum chaos. The
GUE consists of Hermitian matrices with independent
elements drawn randomly with respect to the unique
unitarily invariant measure [20]. GUE forms the relevant
RMT model for the important class of chaotic or complex
autonomous Hamiltonian systems that are unrestricted
by any additional symmetries. We may examine the sen-
sitivity to perturbations for the GUE by constructing the
unitary operator UGUE � exp��iHGUE��, where � is a
284102-2
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FIG. 2. Fidelity decay for UGUE averaged over 50 computa-
tional basis states with � � 0:3 for � � 0:001 (dashed line),
� � 0:01 (dotted line), and � � 0:1 and 100 (chain lines), com-
pared to the FGR/RMT prediction (solid line). Inset: Spacing
distribution for UGUE for � � 100 compared to Poissonian
(solid line) and Wigner-Dyson (dashed line) distributions.
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FIG. 1. Fidelity decay for UCUE averaged over 50 computa-
tional basis states (dashed lines) is in excellent agreement with
the golden rule decay (4) and the RMT rate (9) for � �
�0:1; 0:2; 0:4� (solid lines top to bottom). Chain lines show
the fidelity decay for two typical computational basis states
in the case � � 0:1.
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time delay between perturbations. We consider the same
perturbation as for the CUE case. For sufficiently small �,
the propagator approaches identity and the overlap decay
is dominated by the perturbation operator, O�n� �
jhexp��i�V�ij2 �O��2�2n2�. This behavior is demon-
strated in Fig. 2 for � � 0:001 and � � 0:01 and with
� � 0:3. For larger values of �, the fidelity decay under
UGUE obeys the FGR with the RMT rate (9).

The important point is that for sufficiently large � the
eigenphases of UGUE become spread pseudorandomly in
the interval �0; 2��. Under these conditions, the eigen-
phases of the map UGUE exhibit the Poissonian spectral
fluctuations that are characteristic of classically integra-
ble (time-periodic) systems. We checked the nearest-
neighbor spacing distribution of UGUE and found that
for � � 100 the statistics are in excellent agreement
with the Poissonian distribution P�s� / exp��s� (see inset
of Fig. 2). However, the eigenvectors of UGUE are random
(by construction) and independent of � (for finite �). From
these observations, it is clear that the presence of Wigner-
Dyson spectral fluctuations in the implemented U, which
comprises the only basis-independent criterion of quan-
tum chaos, is not actually necessary for the onset
of exponential (FGR) decay at the rate (7). This suggests
that it is the RMT statistics of the eigenvectors of U that
lead to the FGR decay with the RMT rate.

We next consider the fidelity decay for the quantum
kicked top, which is an exemplary dynamical model
of quantum chaos [20,22]. The kicked top is a unitary
map UQKT � exp��i�Jy=2� exp��ikJ

2
z=j� acting on the

Hilbert space of dimension N � 2j� 1 associated with
an irreducible representation of the angular momentum
operator ~JJ . In previous fidelity decay and LDOS studies,
the choice of perturbation has usually been tied to a
physical coordinate of the system U. We first follow this
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convention and identify the eigenbasis of the perturbation
(5) with the eigenbasis jmji of the system coordinate Jz
(where mj � fj; . . . ;�jg). In Fig. 3, we compare the fi-
delity decay for the chaotic and regular regimes of the
kicked top for averages over 50 initial computational
basis states. The fidelity decay for the chaotic top
(k � 12) is well described by the FGR prediction (4)
and the RMT rate (9), whereas the regular top (k � 1)
shows a slower nonexponential decay rate. Similarly, if
we associate the perturbation eigenbasis with the basis of
the Jy coordinate, the fidelity decay for the chaotic top
remains in agreement with the RMT rate and the regular
top again exhibits nonexponential decay, though in this
case with a faster decay than the RMT rate (9). However,
we now demonstrate that an exponential decay at the
RMT rate arises even for the regular kicked top when
the qubit perturbation (5) is diagonal in a generic basis
relative to the eigenbasis of UQKT. Specifically, we leave
the perturbation eigenvalue spectrum unchanged but set

Up � T�j exp��i��
j
z=2��T�1; (10)

where T is drawn from CUE. As demonstrated in the inset
of Fig. 3, under this type of perturbation the fidelity decay
for the regular top is indistinguishable from that of the
chaotic top and is very accurately described by the FGR at
the RMT rate (9).

The sensitive dependence of the type of fidelity decay
on the eigenbasis of the applied perturbation suggests a
close connection with the basis dependence of the eigen-
vector statistics of classically regular quantum models.
Expressed in a generic quantum basis, the eigenvectors of
any quantized classical system U will have randomly
(Gaussian) distributed components. In contrast, in the
eigenbases of the system coordinates the components of
284102-3
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FIG. 3. Decay of O�n� for the kicked top in the chaotic
regime (k � 12) averaged over 50 computational basis states,
with the perturbation eigenbasis mapped to the eigenbases of Jz
(dashed lines) and Jy (chain lines) compared to the FGR decay
(solid lines) at the RMT rate (9) for � � �0:1; 0:3� (top to
bottom). Lines with circles and squares are for the regular
kicked top (k � 1) with the perturbation eigenbasis tied to the
Jz and Jy coordinate bases, respectively (for � � 0:1). Inset:
Average fidelity decay for regular kicked top (k � 1), when
the qubit perturbation is in a random eigenbasis (10) and with
� � �0:1; 0:3� (dashed lines), compared to the FGR/RMT rate
(solid lines).
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classically chaotic and integrable systems are known to
be different [8], with the former Gaussian distributed and
the latter exhibiting substantial deviation from the ca-
nonical Gaussian distribution. In light of this connection,
in the case of quantized classical models we infer that
exponential (nonexponential) fidelity decay can be corre-
lated with the presence (absence) of characteristic RMT
spectral fluctuations in the unperturbed system provided
that the applied perturbation commutes with a system
coordinate.

In summary, we have shown that the fidelity decay may
be measured efficiently on a QIP. In the case of random
unitary and Hermitian matrices, as well as a classically
chaotic dynamical model, we have shown that the fidelity
decays exponentially with a characteristic rate given pre-
cisely by the variance of the perturbation’s eigenspec-
trum. The occurrence of the exponential decay is not
directly dependent on the Wigner-Dyson fluctuations of
the unperturbed spectrum, but does depend sensitively on
the RMT statistics of the system eigenvectors in the
eigenbasis of the applied perturbation. Hence, the fidelity
decay for both classically regular and chaotic dynamical
systems is given by the FGR under all but a small subset
of unitary perturbation operators. In the case of classical
models, we conclude that the fidelity decay provides a
reliable indicator of RMT statistics (quantum chaos) in
284102-4
the unperturbed system only when the applied perturba-
tion is restricted to the subset of perturbations that com-
mute with a classical coordinate.
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