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A unidirectional optical pulse propagation equation, derived directly from Maxwell’s equations,
provides a seamless transition between various nonlinear envelope equations in the literature and the
full vector Maxwell’s equations. The equation is illustrated in the context of supercontinuum generation
in air and is compared to a recent scalar model of Brabec and Krausz. Fully vectorial aspects of the
model are illustrated in the context of extreme focusing of a femtosecond pulse.
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The higher dimensional nonlinear Schrodinger equa-
tion (NLS) is ubiquitous as a remarkably robust descrip-
tion of weakly nonlinear dispersive wave propagation in
widely different physical contexts. In optics, it can be
derived, with higher order correction terms included,
from Maxwell’s equations as an asymptotic expansion
in a small parameter [1]. Recent experimental develop-
ments in extreme femtosecond nonlinear optics have led
to situations where the validity of the NLS model, even
with correction terms included, comes into question.
Several recent studies have focused on studying or deriv-
ing various improved, corrected equations that extend
beyond the basic quasimonochromatic, slowly varying
NLS envelope approximation [2-9]. Despite the robust-
ness of the NLS in describing extreme nonlinear behavior
well beyond its expected range of validity, there exists no
means of gauging the accuracy of various correction
terms beyond directly integrating Maxwell’s equations
themselves. In the present Letter, we derive a unidirec-
tional pulse propagation equation (UPPE) that provides a
seamless transition from Maxwell’s equations to the vari-
ous envelope-based models. A key is to express the
resulting equation in the spectral domain. The UPPE
captures the true dielectric (linear and nonlinear) re-
sponse of real materials over the physically relevant fre-
quency bandwidth. Moreover, unlike earlier approaches,
extreme linear and nonlinear focusing events approach-
ing scales of the order of the wavelength of light in the
material are correctly described. In addition, known
envelope equations can be obtained in a physically trans-
parent manner from it. The UPPE equation can be im-
plemented numerically in an efficient manner, and the
effects of turning on and off various correction terms in
the envelope approximations can be evaluated. We derive
the UPPE from Maxwell’s equations and elucidate its re-
lation to envelope equations by deriving the nonlinear en-
velope equation (NEE) introduced previously by Brabec
and Krausz [2]. Finally, we present numerical simulation
of supercontinuum generation in air to demonstrate dif-
ferent levels of approximations, from UPPE, to NEE. We
also show how terms, not included in scalar propagation
equations, affect extreme self-focusing behavior.
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We suppose a homogeneous, isotropic, dispersive, and
nonmagnetic medium characterized by its linear relative
permittivity €(w). Besides the linear permittivity, the
medium exhibits a nonlinear response with an arbitrary
functional form. Our goal is to derive a unidirectional,
first-order equation that describes nonlinear pulse propa-
gation in this medium. For concreteness, we call the
positive z axis the forward direction, while the negative
z axis points in the backward direction.

Let us consider, for a moment, only a linear ‘‘back-
ground” medium. In general, it is possible to split an
arbitrary radiation field into forward- and backward-
propagating parts. For a homogeneous medium we have
an explicit expression, in the spectral representation, for a
pair of the corresponding projection operators

p=(PE) _ 1D F sen(k,) gigk X H(E) "
Hk)) 2\HE) = sgn(k,) 22k x D(k) )

Here, the argument k denotes the corresponding plane-
wave (Fourier) component of the vector field, and the
angular frequency w(k) and the wave-vector amplitude k
are related through the linear dispersion relation
w(k)*e(w(k)) = c?k?. It is straightforward to check that
P+ leaves invariant any forward (backward) propagating
plane-wave solution of Maxwell’s equations, while it
annihilates all plane waves going in the opposite direc-
tion. The projection properties for general fields then
follow from linearity and completeness of plane-wave
functions.

We now return to our original, nonlinear problem. The
optical field modifies the background medium through a
nonlinear response that is characterized by the constitu-
tive relation connecting the electric field and electric
induction. Usually, the constitutive equation expresses D
as a functional of E, D = €,€ * E+ IBNL(E). Here, we
use it in the reverse direction to express E as a functional
of D in order to split the electric field into a “‘background-
medium contribution” and a nonlinear part:

E(ﬁ) = EL(B) + ENL(B) )

Here, the left-hand side is the solution to the complete
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constitutive equation, while the first term is the solution
to the linearized constitutive equation. The last term
represents the nonlinear response of the medium to the
optical field, and Eq. (2) is used to define it. In terms of
nonlinear polarization, Py, Ex..(D) can be expressed in
the spectral representation as

EOE(w(k))ENL(B’ ]2) + IBNL([)): 76) =0. 3)

Because we are interested in a unidirectional equation,
we are by definition restricted to a situation where the
light backscattered from the pulse is weak relative to the
pulse itself, and second, it cannot significantly contribute
to the nonlinear response of the medium. These approxi-
mations are inherent to all unidirectional envelope propa-
gation equations.

Expressed mathematically, the first condition reads

(a7 ()= (5) @
H PULSE H Hi

In other words, the pulse optical field has to be almost
invariant under the forward-projection action. The second
condition can be stated as

i)NL(D) = ﬁNL(Bf)r (5)

which means that the nonlinear response is mainly due to
the forward-propagating part of the field.

Having introduced the physical motivation, we are now
in a position to derive the propagation equation. In fact,
Eq. (4) suggests the procedure. One needs to write down
an equation for the forward-projected field D;. To this
end, we start from Maxwell’s equations and use the
formal splitting (2) of the electric field into “linear”
and ‘“‘nonlinear” parts and express the system in opera-
tor form

; DY _ VX H B 0 ©
\H ;—;VXEL(ﬁ) ﬁVxENL '

Acting with P* from the left on this equation we obtain
the desired projection. Since P~ are time independent
and because they commute with the right-hand side of the
linear Maxwell’s equations, the projector ‘‘passes
through” the linear part and projects out the forward
fields. To evaluate the nonlinear part, we then transform
the projected equations into the spectral domain in which
both the linear propagation generator as well as the pro-
jectors P~ are diagonal. Using Egs. (1) and (3), a straight-
forward calculation leads to a propagation equation in the
spectral domain restricted to k, > 0

9,D1(k) = —iw(k)Dy(k)
X L U ee o L
+ %w(k)[PNL(D, k) - pkk : PNL(D’ k):|
@)
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This is our central result, a UPPE. We emphasize that this
is an exact equation with an arbitrary functional form of
Py that can represent instantaneous or delayed nonlin-
ear response of the medium. The only approximation
necessary for practical calculations is to use Eq. (5) in
the nonlinear term. Then, if Eq. (4) also holds, the solu-
tion can be interpreted as a propagating pulse field.

The structure of the UPPE is similar to that of other
nonlinear propagation equations with the linear and non-
linear “propagators” separated. Here, however, we have
a vector equation that correctly reflects the fact that
V-E+#0in general. This is expressed by the last term
which becomes important for tightly focused pulses and
that has a profound effect on the self-focusing behavior.

We now show how this equation reduces to the NEE
model of Brabec and Krausz [2]. Other envelope equa-
tions follow from NEE [9] through further approxima-
tions or they are closely related to it [7]. As a first step, the
last term on the right-hand side of Eq. (7), which reflects
V - E # 0 due to nonlinear response gradients, is ne-
glected. Next, to reduce UPPE to an envelope equation,
one replaces w(k) by a suitably approximated expression,
both in the linear propagator and in the nonlinear re-
sponse part. Finally, the resulting equation is transformed
to real space.

To this end, we write the exact dispersion relation

%/e(w) = J2+ i, (8)

and Taylor expand it around a reference frequency wg,
formally up to infinite order, and in k| up to second order:

(0 — wg) B (w — wg)" K
kg + + =k +-5, O
R v, Zz n! Fo O

where kg = wgnp/c is the reference wave vector, and
expansion coefficients B are complex in general.
Rearranging this expression and approximating 1/k, =
c/(nyw) = c¢/n,(wg + @ — wg)~', one gets

w _ wg B (0 — wg)"
— =R _ _ P\ @WRrRS
Vg Vg k. = k) ,;2 n!

_ -1 2
+<1+‘” wR) k] (10)

wWR 2nba)R )

This approximation to (k) is used in the linear part of
Eq. (7). Physically, it corresponds to the linear dispersion
relation of the NEE equation. In the corresponding non-
linear term, w(k) is rewritten equivalently as

w(k) = og + (0 — wy). (11)

These expressions are now inserted into Eq. (7), and the
forward complex amplitude is expressed in terms of an
envelope A as Dy = Aexplikgz — iwgt]. The spectral-
domain operators (k, — kg) and (@ — wg), which act on
Dy, then transform in the real-space domain into —id,
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and id,, respectively, which act on the envelope A only:

(kz - kR)Df — _lazA eXp[ikRZ - int], (12)
(a) - CUR)Df 4 +16,A eXp[ikRz - la)Rt]

As a result, we obtain the well-known NEE equation of
Brabec and Krausz [2]
. 9\~ i '
9A = L(l +2> ALA+iDA+ ’—R<1 +¥>PNL,
2kR wWR 2 wWR
(13)

where D =3, B /n!(id,)" is the dispersion operator,
0y = v;la, + d,, and Py stands now for the nonlinear
polarization envelope.

Several other envelope equations can be derived from
NEE (or directly from UPPE). For example, an equation
in which the space-time focusing operator (1 + iwg'9,) ™!
[see Eq. (13)] is replaced by its first-order expansion
(1 — iwg'd,) has been used [5,6,9]. We show elsewhere
that this kind of truncated approximation is restricted to
relatively narrow-bandwidth pulses. Examples of equa-
tions that go beyond the envelope approach (but retain the
paraxial approximation) are the so-called first-order
propagation equation by Geissler et al [7] and reduced
Maxwell’s equation [10]. Both can be derived from UPPE
along the same lines as above.

Thus, instead of Maxwell equations we have a general
unidirectional equation that is easier to solve numerically,
it is still essentially exact, and it preserves the vectorial
character. Instead of just a Taylor expanded susceptibility,
the linear response that can include absorption lines and
arbitrary chromatic dispersion is used. Moreover, UPPE
enables us to derive all the known approximations in a
physically transparent way by simply replacing the exact
dispersion relation by a suitable approximation. This
makes it possible to use a UPPE numerical solver to
mimic solutions of these equations and, thus, assess their
validity within realistic physical settings. We demonstrate
this in the following part of this Letter.

We consider a 25-femtosecond (0.1 mm waist) pulse
with a carrier wavelength of 775 nm and power of 8 GW
propagating in air. The pulse duration is chosen very short
to highlight propagation effects that are absent in the
NLS approach, namely, space-time focusing and the fre-
quency dependent nonlinear response (shock formation).
We compare supercontinuum generation in three models.
First, we use UPPE with full chromatic dispersion of dry
air taken into account in the wavelength region from
1200 to 200 nm [11]. The other two models, emulated
by our UPPE solver, will be the NEE equation in which
the dispersion operator D = Y&, B0 /k\(ia,)* [Eq. (13)]
is expanded up to the second (L = 2) and/or third (L = 3)
order with B® being purely real in this case. For nota-
tional purposes, we term these approximations ad2NEE
and ad3NEE, respectively (standing for NEE with ap-

283902-3

proximate dispersion). In all cases, we assume an instan-
taneous optical Kerr effect with n, =5 X 10723 m?/W
and plasma generation by multiphoton ionization. The
reader is referred to Ref. [12] for a physical description
of the model.

Figure 1 shows the pulse spectrum after the self-
focusing collapse is arrested by plasma generation. In
all cases, a broad high-frequency component is generated
on the steepened trailing edge of the pulse as described
previously in Ref. [8]. However, we see that the details of
the spectra are rather different. Here, the UPPE solution
describes the correct propagation properties of all wave-
lengths that contribute to the spectral range shown. The
difference between the UPPE and ad2(3)NEE solutions
can be traced to a difference in the susceptibility they
model. It happens that the group velocity dispersion is
rather small around 800 nm and the approximated sus-
ceptibility rapidly deviates from the actual susceptibility
at higher frequencies. Including the third-order disper-
sion substantially improves the agreement with the UPPE
solution. The remaining discrepancy is then restricted to
the high-frequency range in which the supercontinuum
spectral intensity falls off. This demonstrates that in the
NEE the dispersion operator should be treated exactly in
the spectral domain or care should be exercised in ap-
proximating chromatic dispersion by an expansion. When
the dispersion is handled properly, NEE is an excellent
approximation. It can be shown that the error it introduces
is of fourth order in the transverse wave number. Thus,
NEE is accurate in most situations, with the exception of
extremely nonparaxial propagation.

However, the most popular optical propagation equa-
tions, including the NEE, are still scalar equations de-
rived under the assumption of V - E = 0. Because of the
spatially inhomogeneous nonlinear response, the correct
description must take into account the vectorial nature of
light, which manifests itself in the form of the last,
polarization scrambling term in Eq. (7). The vectorial
effects were studied in [13] for a Helmholtz (cw) equa-
tion and were shown to be more important than non-
paraxiality. They have even more profound effect on the
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FIG. 1. Supercontinuum generation in a 25-femtosecond

pulse in air. Power spectra after the self-focusing collapse, at
a propagation distance of = (.55 m.
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self-focusing behavior of ultrashort pulses. While in the 50 ‘ ‘

cw regime nonparaxiality arrests the self-focusing col- 40 - _ A

lapse [14], it is not the case, in general, in the fully time- VA /g"’a'if/ c

resolved case. The difference comes from the fact that the 3.0 - ear

high transverse wave numbers do not represent evanescent
waves, like in the cw case, but contribute to higher-
frequency components of the optical field that continue
to participate in the self-focusing process.

To demonstrate the importance of the vectorial nature
of the propagation equation, we present below an ideal-
ized case study designed to facilitate comparison with a
scalar approach. Let us consider an initially tightly colli-
mated (waist of 1 wm, A = 800 nm) femtosecond pulse
that enters an instantaneous nonlinear Kerr medium. To
avoid competing physical effects, we do not consider any
other interaction (e.g., multiphoton ionization) and we use
a relatively long-duration pulse (170 fs) to minimize other
correction effects (e.g., spatiotemporal focusing). To fa-
cilitate comparison with scalar equations, we consider
the radially symmetric, linearly polarized component of
the optical field. We have performed simulations of the
full UPPE equation with and without the divergence
correction. Figure 2 shows the evolution of the maximal
intensity along the propagation distance in the nonlinear
medium for a pulse with a supercritical peak power. We
see that the noncorrected solution exhibits an NLS-type
blowup singularity while the full solution undergoes ini-
tial self-focusing that is arrested by the correction effect.
Thus, the new term brings a qualitatively new behavior.
Although it is relatively small in many circumstances, it
plays an important role both in a tightly focused situation
and whenever the polarization scrambling effects are
significant. We emphasize that this effect is completely
omitted in scalar propagation equations and thus far has
been treated only in a perturbative fashion in vectorial
approaches (see, e.g., Refs. [13,15]). Here we provide a
full, self-consistent treatment.

In conclusion, we have derived a robust unidirectional
nonlinear pulse propagation equation. It provides a seam-
less transition between a full vector Maxwell and various
envelope approaches discussed earlier. Computationally,
it is possible using the UPPE to accurately evolve carrier-
resolved high and low power electromagnetic pulses over
meter-scale physical distances which is a few orders of
magnitude longer than those accessible by vector Max-
well solvers. In addition, extreme self-focusing events
with transverse physical scales approaching the wave-
length of light in the material can be accurately tracked.
An analogous equation to (7) can be written for the
backscattered component of the optical field. This, in
principle, makes it possible to investigate the properties
of the backscattered light. In this Letter we showed that
the UPPE model allows us to establish the validity of
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FIG. 2 (color online). Influence of the nonzero V - E correc-
tion term for a tightly focused pulse entering a nonlinear Kerr
medium. The full line represents a UPPE simulation of the
radially symmetric component of the optical field; the dotted
line is obtained from the simulation without V - E-related
corrections, while the dashed line shows a linear case for
comparison.

various approximations inherent in various envelope ap-
proaches and investigate extreme nonlinear self-focusing
of a femtosecond pulse. Full details will appear in a
longer publication.
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