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One-Dimensional Optically Bound Arrays of Microscopic Particles
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A one-dimensional optically coupled array of colloidal particles is created in a potential well formed
by two counterpropagating Gaussian light beams. This array has analogies to linear chains of trapped
atomic ions. Breathing modes and oscillations of the center of mass are observed. The stability of the
array is in accordance with the Kramers model.
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indicated the potential for creation of such regularly
spaced particles. We provide a physical explanation of

a � � is satisfied. Our calculations of the axial force
follow those elsewhere [15–17] with the sphere radius
Introduction.—The organization and manipulation of
colloidal and biological matter at the microscopic level
can be achieved using light forces. Gradients of the opti-
cal field can induce dielectric spheres of higher refractive
index than their surrounding medium to be trapped in
three dimensions in the light field maxima [1,2]. Such
‘‘optical tweezers’’ allow physicists to test several funda-
mental phenomena. Examples include thermally activated
escape from a potential well [3], stochastic resonance
phenomena [4], and various studies in colloid physics
[5]. Recently the predetermined creation of arrays of
microscopic particles, using light forces, has resulted in
intense world-wide interest. Holographic methods [6], the
phase contrast technique [7], the use of nonzero order
light modes [8], and spatial light modulator technology
[9] have successfully been used to create particle arrays in
two and three dimensions. In 2D the light potential
allows predesignated trap sites to be occupied by the
particles of interest. Such tailored optical landscapes
can give insights into mechanisms at the atomic level
or, for example, the pinning of magnetic flux lines in
type-II superconductivity [10].

Light forces may wholly dictate the assembly of a
microscopic system and create analogs to atomic systems
[10–12]. There have been a few observations of such
‘‘optical binding’’ notably by Golovchenko and co-
workers [11,12]. They investigated systems where the
interaction of coherently induced dipole moments of the
spheres were said to interact to bind matter. Light forces
may act to optically bind matter. These forces can organ-
ize microscopic particles with the prospects of studying
‘‘optical molecules’’ or systems in soft condensed matter
physics. This topic has been controversial but potentially
offers an important mechanism to self-assemble matter.

In this Letter we demonstrate the creation of one-
dimensional coupled arrays of microscopic colloidal par-
ticles. An important distinction in our work is that the
light forces that confine the particles also dictate the
interparticle spacing due to light refocusing and may be
deemed a form of optical binding [11,12]. Buican et al.
[13] have studied optical guiding in a Gaussian beam and
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the creation and dynamics of the chain. We infer directly
from our results quantitative information about the opti-
cal trap potential and trap oscillation frequency. Stability
of the array is also investigated.

Atomic ion chains are deemed strong candidates for
quantum computing. Chain dynamics can affect decoher-
ence in these systems. Thus creating an analogous model
with microscopic particles may offer valuable insights
into similar dynamics at the atomic scale. Though our
array separation is determined by light forces, it shows
analogous behavior to a system of linear atomic ions
where electrostatic forces dominate [14]. As particles in
our optical trap can be considered harmonically bound,
such systems can exhibit excitations, similar to those
of atomic ions, including a center-of-mass motion
and breathing modes. We observe such behavior in our
experiments.

Experiment.—A continuous wave Ti-sapphire laser op-
erating at 780 nm provides the trapping laser light. The
beam was expanded and split into two equal ( � 25 mW)
counterpropagating components which were then focused
into a rectangular glass cell with their respective beam
waists approximately 150 �m apart along the common
axis far from walls. The focal length of the focusing
lenses was 50 mm, the waist sizes were approximately
3:5 �m, and the cell outer dimensions were 5 mm�
5 mm� 20 mm. The cell was filled with uniform silica
monodispersed colloidal microspheres in water of diam-
eters 2.3 and 3 �m (Bangs Laboratories, Inc.). A micro-
scope objective ( � 20, NA � 0:4, Newport) placed
orthogonally to the laser beam propagation direction
projected scattered light onto a charge-coupled device
camera.

The separation of the beam waists in this counterpro-
pagating geometry allows a single sphere to be trapped in
the potential well between them (see Fig. 1); there is
already tight confinement in directions transverse to the
beam axis. Blocking one of the beams turns this geom-
etry into one for optical guiding [1,13]. Theoretically, we
consider the interaction of dielectric spheres of radius a
with a Gaussian beam of wavelength � when the relation
2002 The American Physical Society 283901-1



FIG. 2. Experimental data for arrays of (a) two, (b) three,
and (c) seven spheres (each 3 �m in size). The diagrams on the
right elucidate how we fill up the approximately harmonic
potential well created by the two counterpropagating beams.
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FIG. 1 (color online). Axial forces for the counterpropagating
beam geometry. The peak point for each curve corresponds to
the beam waist position. Forces from both beams (F1 and F2)
are drawn as positive. The resultant axial force �F is the
difference of two forces drawn. The inset shows how particles
reside in the resulting potential well.
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exceeding the trapping laser wavelength. The model
allows us to calculate the variation of axial force along
the beam propagation for our experimental param-
eters (Fig. 1). For collinear beams with slightly displaced
waists (along the optic axis), a near parabolic optical
potential results with the single equilibrium position at
the minimum at the intersection of the curves in Fig. 1.

In the counterpropagating geometry, when a second
sphere moves into the same trap the first (trapped) sphere
(Fig. 2) is pushed from its equilibrium point. The new
equilibrium position of two spheres in trap is above the
bottom of the potential well with a separation between
them as shown. Each sphere will experience the same
value of differential force �F (Fig. 1) which can be
calculated from the model. This process repeats each
time a new sphere drifts into the trap region (Fig. 2).
This behavior is observed with both 3 �m diameter and
2:3 �m diameter spheres. We stress at this point that the
array length and importantly the interparticle spacing we
observe is extremely long in comparison with typical
distances over which electrostatic interactions occur in
optical traps [5]. For two 3 �m particles we observe an
interparticle separation of 48 �m [Fig. 2(a)].

For typical experimental conditions the maximum
number of particles in a stable trapped array was seven.
The overall array length was �150 �m in this instance.
Very occasionally, we observed trapping of eight or even
nine spheres though this was rather unstable with the
outer spheres of the array leaving the trap region very
quickly. This instability is due to thermally activated loss
as the outer particles within the chain have relatively
weak optical potential barriers to overcome to escape
the potential well. Thermal fluctuations also caused a
variation in overall array length for greater than seven
spheres for these trap parameters.
283901-2
The mechanism for formation of this array is purely
due to light refocusing and subsequent balancing of ra-
diation pressure. Any given irradiated sphere refracts the
majority of incident light thus acting like a lens. This
creates a secondary light radiation pressure force on an
adjacent sphere, that in combination with the light radia-
tion pressure from the focused input beams, creates a new
equilibrium in which the array of spheres can reside. Each
sphere in the array is ‘‘optically’’ coupled to each of the
other spheres. We have adapted a numerical ray optics ray
model [17] to calculate the equilibrium position for two
spheres subject to beam waists as in the experiments
separated by 150 �m. The model takes into account
the fraction of incident light focused by the sphere to
calculate the interparticle forces. The optical force on
the second sphere due to the first is calculated to be
�0:175 pN. The calculations of the model verify to
within 10% the experimentally observed spacing
(48 �m) and thus confirm the physical process respon-
sible for the array generation. We also note that this
explains earlier observations on two guided particles
[13]. In terms of our model, spheres in the array reside
in their own potential well. As an example, consider two
spheres where each of the spheres focuses the light at a
position approximately midway between the two spheres.
In this instance this creates a situation where each of the
spheres resides in one well of a double well light potential.
For a greater number of spheres the idea is similar, with
each sphere acting to create a new potential well within
the system, forcing the particles farther up the well
created by the counterpropagating beams in order to
balance the forces and reach an equilibrium position. A
detailed analysis will be presented elsewhere.

Electrostatic interactions could potentially play a role
in the array formation. The interaction between charged
spheres is based on the Derjaguin, Landau, Verwey, and
Overbeek theory [5,18] which is limited by the screening
length due to the atomic ions present in solution. For our
283901-2
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experimental parameters the screening length is very
short ( < 100 nm) and the electrostatic interaction re-
stricted to a length scale of less than a micron, an order
of magnitude lower than the interparticle spacing we
observe. We dispersed the spheres in 1 M NaCl for some
experimental runs and observed no discernible change in
the interparticle spacing for our arrays, thus validating
our premise that the array is created solely by light forces.

We have measured experimentally the equilibrium po-
sitions of the spheres for arrays from one to seven par-
ticles in length (Fig. 3). The form of these data is
reminiscent of that for trapped atomic ions in a linear
Paul trap [14]. We are able to extract detailed quantitative
information from these experimental data such as the
exact form of the trap potential and calculate the actual
axial trap frequency. We have fitted the data in Fig. 3 in
this way to a parabolic potential, determining the axial
trap frequency to be approximately 300 Hz from our
theory (Fig. 1) and our experimental parameters.

The lowest mode of oscillation corresponds to the
center-of-mass motion of the particle chain. All of the
particles move to and fro in unison in this mode. We
observed center-of-mass motion of this array. When a
chain of a given number of spheres was created, one of
the trapping beams was blocked and the whole chain was
observed to accelerate against the direction of propaga-
tion of the blocked light beam. Reintroducing the ob-
structed beam (within a few seconds) caused the chain
to restore its initial position with a time scale determined
by differential force at the current array position.
Altering the laser power equivalently in both beams (no
change in differential force; see Fig. 1) did not alter the
sphere positions but did result in higher light scattering
from the spheres. We also observed a breathing mode of
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FIG. 3 (color online). Equilibrium positions for particles in
the array. The parabolic fit shows the harmonic form (as
expected) of the light beam potential. Notably, this allows us
to extract important quantitative data about the trap (frequency,
light potential).
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the trapped particle array. One of the lenses was mounted
on the precision motorized z translation stage, to vary the
focal position of one trapping beam. In Fig. 4 we see the
corresponding breathing behavior of a long particle chain
(of 2:3 �m particles) on the z displacement of one of the
lenses. The reduced light pressure force on the one side of
the potential well resulted in increases in interparticle
spacing. As the lens returns to its original position, the
chain self-restores. The time scale of the motion is very
slow as the system is heavily overdamped. The dynamics
are similar to center-of-mass and breathing modes in
chains of linear trapped ions [14].

In the majority of research related to optical tweezing,
little attention has been devoted to the temporal stability
of the trap. Factors such as local temperature fluctuations
caused by light heating and local convective microflows
might affect the stability of the trap. Activated escape
from such a trap underpins several physical and biological
processes. We loaded spheres into our trap and measured
their temporal stability. A quantitative description of
diffusion activated escape from a one-dimensional poten-
tial well was given by Kramers [19]. It states that average
residence time is a function of potential well parameters
and obeys the equation h	Ki � 	0 exp�U=kBT�, where U is
potential well depth, T is temperature, and 	0 is the time
scale responsible for restoring relaxation dynamics
within the well and can be expressed, for spheres far
from walls and each other, as [3,4] 	0 � 6��a=m!2,
where a is sphere radius and m is the mass, � is water
viscosity, and ! is the associated frequency of the trap.
Experimentally we measured the residence time as a
function of number of spheres in the trap (Fig. 5). Each
escape event is random and has a low probability in
agreement with Poisson statistics.
FIG. 4. Observation of a breathing mode. In (a) and (c) we see
the displacement of the chain as a whole from the center with
the interparticle spacing increasing as one goes farther from
the center of the array.
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FIG. 5. Kramers transition time for the array. The main
features of the observed residence times are supported by a
general statistical theory showing exponential decay. The fit is
appropriately described by an exponential function of the form
h	Ki � 	0 exp	

U
�n
c�kBT

� and has the magnitude of the potential
barrier U=kBT varied from 4.1 to 5.8 and 	0 � 1, c � 16 for
particle number n � 1; 2; . . . 7.
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In conclusion, we have presented experimental obser-
vation and modes of oscillation of a one-dimensional
optically bound system of colloidal particles that is akin
to an extended line of coupled oscillators.
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