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A necessary and sufficient hierarchy of conditions is derived that is completely equivalent to the
failure of the Glauber-Sudarshan P function to be a probability density. The conditions are formulated
in terms of experimentally accessible characteristic functions of quadratures.
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The question of how to distinguish quantum states of a
quantized harmonic oscillator, such as a mode of radia-
tion or of atomic motion in a trap, having a classical
counterpart from those displaying nonclassical properties
has been a central issue in quantum optics over many
years [1-21]. On one hand, rather general criteria were
proposed [1-8], whose experimental verification may be
cumbersome. On the other hand, observable criteria were
formulated [9-15], which are based on specific observ-
ables. Particular nonclassical phenomena have been mea-
sured, such as photon antibunching [9], sub-Poissonian
photon statistics [10], quadrature squeezing [11], negative
values of the Wigner function [13], and photon number
oscillations [16]. These features, however, only visualize
specific aspects of nonclassicality and do not characterize
the general properties of the quantum state.

A broadly accepted definition of nonclassicality of a
quantum state relies on the Glauber-Sudarshan P function
[22]. An arbitrary density operator @ describing a single
oscillator mode can be given in the representation

6 — [ P(@)la)alda, (1)

which is diagonal in the coherent states |a). The real-
valued and normalized function P(«) contains the com-
plete information on the quantum state. It can be used to
express any expectation value of a normally ordered
operator function, :f(a, at):, of the annihilation and
creation operator a and at, respectively, in a form that
formally corresponds to a classical mean value:

(e at)) = f LaP(a)f(a, o). @)

In general, however, the P function may be more singular
than a 6 function and can attain negative values. In such
cases, it fails to be a probability density. If P(a) is a
probability density, then Eq. (2) implies a close corre-
spondence between expectation values in quantum and
classical physics.

Consequently, a quantum state is considered to be non-
classical if it cannot be written as a statistical mixture of
coherent states [1-3], i.e., if the P function does not show
the properties of a classical probability density, Py(a):

P(a) # Py(a). (3)
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We emphasize, however, that beside this condition there is
a second signature of nonclassicality. It has been stated by
Mandel that any light field of a small photon number
displays nonclassical features [2]. Instead, one may say
that a quantum state is nonclassical if the ground-state (or
vacuum) noise plays a significant role for describing its
properties [17]. This formulation is directly related to the
requirement of normally ordering for expressing mean
values according to Eq. (2).

In the following, we will not further deal with this
second signature, but we intend to reformulate the con-
dition (3) in a form that is accessible to experiments. One
of the main difficulties consists in the fact that, due to its
highly singular behavior, in general P(«) cannot be re-
constructed from measured quantities. Thus, it is useful
to formulate criteria for nonclassicality on the basis of a
set of observables, that completely characterizes the
quantum state under study. A prominent example of
such a set of observables are the phase-sensitive quad-
rature operators,

2(p) = ae' +ate ie. 4)

Knowledge of their probability distributions, p(x, ¢), for
all values of the phase ¢ in an interval of size = is
equivalent to the complete knowledge of the quantum
state. Moreover, the quadrature statistics can be measured
for radiation modes, atomic motion in a trap, and for
other related systems (for a review, see [23]).

In a recent Letter [17], one of us made the attempt to
formulate an observable criterion for nonclassicality in
terms of the characteristic function G(k, ¢),

Gk, @) = (e™19)), &)

of the quadratures. It has been found that the P function
cannot be interpreted as a probability density if there
exist values of k and ¢ for which

|Gk, )| > G, (k), (6)
where
Ggr(k) = K2 @)

is the characteristic function of the ground (or vacuum)
state. The criterion (6) is sufficient to describe the non-
classicality of important classes of quantum states, such
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as Fock states, quadrature squeezed states, coherent
superpositions of coherent states, Gaussian mixed states,
and others. Its relevance for the interpretation of mea-
sured data has been demonstrated very recently [18]. In
particular, a statistical mixture of a single-photon state
and the vacuum state behaves nonclassically according to
this condition, even when the Wigner function is non-
negative. However, condition (6) is not equivalent to the
condition (3), since there exist quantum states [24,25]
that violate the former condition but that are nonclassical
according to the latter. Thus, the problem of completely
characterizing the failure of the P function to be a proba-
bility density in terms of measurable quantities has not
been solved yet.

The aim of this contribution is to present a solution of
this fundamental problem. Our main result consists in a
hierarchy of conditions for nonclassicality, formulated in
terms of observable characteristic functions of quadra-
tures. The hierarchy is completely equivalent to the con-
dition (3); in the lowest order it reproduces the criterion
(6) introduced in [17]. It characterizes nonclassicality of a
quantum state on the basis of the same set of measured
quantities already used in [18]. We illustrate the efficiency
of our approach for the only example of a nonclassical
state published yet [24] that violates the criterion (6).

Let us start with a reformulation of the nonclassicality
condition (3) for the function P(«a) = P(a,, «;). For this
purpose, we introduce its characteristic function,

D(u, v) = [oo P(a,, a;) expRi(va, — ua;)]|dada;,
)

i.e., its twofold Fourier transform. It obeys the conditions
©(0,0) = Tr{o} = 1, O(—u, —v) = ®*(u,v). (9)

Now we express the nonclassicality condition (3) in terms
of the characteristic function ®(u, v). A theorem by
Bochner [26] states that a continuous function ®(u, v),
obeying the condition ®(0, 0) = 1, is a classical charac-
teristic function (and thus the Fourier transform of a
probability density) if and only if it is positive semi-
definite. This requires that, for arbitrary real numbers
u; and vy, arbitrary complex numbers &, (k = 1,..., n),
and for any integer n, the condition

n

Z D(u; — Uj v; _Uj)fifj =0

ij=1

(10)

is fulfilled. In other words, P(«,, ;) has all the properties
of a probability density if and only if ®(u, v) is positive

[D(uy, v)I? + [P(uy, v)I? + [P(uy + uy, vy + vo)> = 2Re{D(uy, v)P(uy, v2)P*(uy + uy, vy + vy)} > 1.

semidefinite. Then the state under study is said to have a
classical analog. Vice versa, if ®(u, v) fails to be positive
semidefinite, then P(«) is not a probability density.

If we associate with ®(u, v) an n X n matrix with

elements ®,; = ®(u; — u;, v; — v;), the condition (10)
in more compact form reads as
n
> D¢ =0, (11)
ij=1
The left-hand side is a Hermitian form, ®; = CDZ-,

cf. Equation (9). Now we can use the following theorem
(e.g., see [27]): An n X n complex matrix is positive
semidefinite if and only if the determinant of every of
its principal submatrices is non-negative. In particular,
this implies that the relation (11) is fulfilled, if and only if

for any order k = 2, ..., n the conditions
1 D, Dy
p= %2 o Py ay
q)Tk q);k e 1

are valid. Note that the case k = 1 is irrelevant, since it
leads to D; = 1, independent of the quantum state.
Thus, we may reformulate the necessary and sufficient
condition for the classicality of a quantum state. A quan-
tum state is classical, i.e., its P function is a probability
density, if and only if the condition (12) is fulfilled for -
all values of k = 2, ..., co. Based on this result, we arrive
at the following necessary and sufficient criterion for
nonclassicality. A quantum state is nonclassical if and

only if there exist values u;, v; (i = 1, ..., k) for which at
least one of the determinants D, (k = 2, ..., 00) becomes
negative:

D, <O. (13)

We may define nonclassicality of order k—1 (k=
2, ..., ) just by the condition (13). The higher the order
of nonclassicality (and thus of the determinant), the more
points of the characteristic function are included in the
corresponding condition and the finer details of the char-
acteristic function are relevant. Thus, in fact we arrive at a
hierarchy of conditions (13) for nonclassicality [28].

Next, we consider the conditions for nonclassicality
of first and second-order more explicitly. Setting u; —
u, = u and v; — v, = v, the condition of first-order non-
classicality, D, < 0, simplifies to

| D (u, v)| > 1. (14)

The second-order condition, D5 < 0, reads as

(15)

Here we have changed the notation u; — u, — u; and u, — u3 — u, and analogously for v. Clearly, this condition could
be further simplified by choosing special relations between the points in the (u, v) plane. Then, however, one may partly
lose information on the nonclassical effects of the considered order.
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For simplicity, let us consider in the following the
situation for quantum states that show rotational sym-
metry in phase space. We introduce the real variables k, ¢
[cf. Equation (5)] via u = ksing, v = kcose. For
@-insensitive quantum states, we get ®(u, v) = Pk, 0) =
®(k), with ®(k) = ®(—k). Thus, the first-order nonclas-
sicality condition (14) reads as

N,(k) = |Dk)| > 1. (16)

To simplify the second-order condition, we choose u; =
uy, = u/2 and v; = v, = v/2, so that the inequality (15)
can be rewritten as

[1— ®E)][1 —20%k/2) + P)]<0.  (17)

Interestingly, in this case the determinant D5 factorizes,
where the first factor is closely related to the first-order
condition (16). In particular, if the state fails to be non-
classical of first order [|®(k)| < 1], the factor [1 — ®(k)]
cannot be negative. In this case, second-order nonclassi-
cality can arise only from the second factor. The condi-
tion reduces to

N,(k) = 20%(k/2) — D(k) > 1, (18)

for our specific choice of points.
For example, let us consider the mixed state proposed
by Diosi [24],

0= > 27"n)nl, (19)
n=1

representing a thermal state of mean excitation equal to
one, whose ground (or vacuum) state has been suppressed
via a measurement. The P function of this rotationally
symmetric state reads as

Pla) = %eilalz — 6(a). (20)

Obviously, it describes a nonclassical state, since it fulfills
the condition (3). The corresponding normally ordered
characteristic function ®(k) is given by

Ok) =2 % — 1. 1)

It is easy to see that |®(k)| = 1, so that the state (19) fails
to obey the nonclassicality condition of first order.

Let us consider the properties of the same state with
respect to nonclassicality of second order. From Fig. 1, it
is seen that the inequality (18) is fulfilled over two semi-
infinite intervals. Analytically, we get from Eq. (21) that
the limit k — *o0 yields ®(k) — —1 and thus N, (k) — 3.
Therefore the state (19) clearly obeys the condition (18)
for second-order nonclassicality.

Thus far, we have found an infinite hierarchy of con-
ditions that a quantum state exhibits nonclassicality, for-
mulated in terms of the normally ordered characteristic
function ®(u, v) of the P function. In the next step we
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FIG. 1. First- and second-order nonclassicality conditions for
the state (19). The dotted line shows N,(k), which never
exceeds the classical limit of 1 (dashed line). The solid line
displays N,(k), which exceeds the classical boundary of 1 over
two semi-infinite intervals.

reformulate these conditions in terms of routinely mea-
sured quadratures. To be more specific, we will intro-
duce the characteristic functions G(k, ¢) defined in
Eq. (5). It is well known (for a review, see [23]) that
this function is the product of the characteristic function
®(ksing, k cose) and the (phase-independent) character-
istic function G, (k) of the quadratures in the ground (or
vacuum) state,

G(k, o) = ®(ksing, k cosg) G (k). (22)

The characteristic functions G(k, ¢) of a freely propagat-
ing radiation mode can be derived from the data mea-
sured by balanced homodyne detection [18]. Moreover,
these functions can even be directly measured for a
cavity-field mode [29] or the quantized center-of-mass
motion of a trapped ion in a harmonic potential [30].

Now we are able to express the first- and second-order
condition for nonclassicality directly in terms of the
measured characteristic functions G(k, ¢). Combining
the first-order condition (14) with Eq. (22), we immedi-
ately find

Ni(k) = |Gk, @)| > Gy (k). (23)

This exactly reproduces the nonclassicality condition (6),
introduced in [17] and applied in experiments [18]. It
states that a quantum state is nonclassical, if there exist
values of k and ¢ for which the absolute value of the
characteristic function exceeds the corresponding value
in the ground (or vacuum) state.

The second-order condition (17), for rotationally sym-
metric states, in terms of the observable functions G(k)
reads as

[Ggr(k) - G(k)] X
[Ger(k) = 2G*(k/2)Gr(k/V2) + G(K)] <0, (24)

where we have used the explicit form (7) of G (k). In
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FIG. 2. Observable conditions for first- and second-order
nonclassicality for the state (19). The dotted line represents
N, (k), which never exceeds the classical limit G, (k) (dashed
line). The solid line displays N,(k), which exceeds G, (k)
within two semi-infinite k intervals.

cases when the state under study does not display first-
order nonclassicality, as for the example of the state (19),
this condition is further simplified. On using Eq. (22), the
condition (18) can be expressed as

Ny(k) = 2G*(k/2)G g (k/2) = G(k) > Gy(k),  (25)

solely in terms of characteristic functions accessible to
measurements. In principle, the same is also possible for
any higher-order condition.

In Fig. 2, we show the quantities N (k) and N,(k)
for the state (19). Since N,(k) = |G(k)| = G (k), this
state exhibits no first-order nonclassicality. However,
N, (k) clearly exceeds the value G, (k) over two semi-
infinite intervals of £ values. This demonstrates second-
order nonclassicality of the state, which is a clear
signature for the existence of a nonclassical P function,
cf. Equation (20). The effect seems to be quite small, but
we stress that even smaller effects of first-order nonclas-
sicality have been clearly observed [18].

In conclusion, we have derived a hierarchy of observ-
able conditions for a quantum state to be nonclassical.
These conditions allow one to verify whether or not the
Glauber-Sudarshan P function is a probability density.
The hierarchy of conditions naturally yields a classifica-
tion of nonclassicality with respect to first, second, and
higher orders. The method is illustrated for the example
of a mixed state, which is classical in the first but non-
classical in the second order.
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