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We demonstrate that the synchronization effect observed [Pedersen et al., Phys. Rev. Lett. 87, 055001
(2001)], when a bunch of ions oscillates between two mirrors in an electrostatic ion beam trap, can be
explained as a negative mass instability. We derive simple necessary conditions for the existence of a
regime in which this dispersionless behavior occurs and demonstrate that in this regime, the ion trap can

be used as a high resolution mass spectrometer.
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The classical problem of interacting particles in a box
has always been an interesting one as it serves as a model
for various physical problems in the real world. Gases,
liquids, and solids are examples of systems that contain
many interacting particles. Particle collision experiments
also have a long history; they have been the source of
much of our understanding of the fundamental nature of
particles and their interactions. These two areas are quite
ideally combined when charged particles are trapped by
electromagnetic fields.

In a recent experiment, Pedersen et al [1,2] have
demonstrated that, when a fast (keV) bunch of interacting
particles oscillates between two electrostatic mirrors
which form a stable trap [3-5], the bunch size can be
kept constant, or self-bunching can occur, even though
the particles do not have exactly the same velocity and in
spite of the non-negligible Coulomb repulsion between
them that should have rapidly spread the bunch. This
counterintuitive behavior (called synchronization by
Pedersen et al. [1,2], but which will be termed as self-
bunching in this Letter) was tentatively explained as due
to the interaction between the particles and the special
kinematics properties of the potential well formed by the
two electrostatic mirrors of the trap. Several empirical
conditions needed for this behavior were given and were
shown to be in agreement with the experimental obser-
vations. However, no formal treatment was given.

In this work, we present a formal criterion for the self-
bunching to occur, and we show that the phenomenon
belongs to a much larger class of behavior, called nega-
tive mass instability, which can be expected whenever
classical interacting particles are bound by a soft wall
potential. We also demonstrate that this effect can be
exploited for high resolution mass spectrometry. A differ-
ent, more microscopic view of the self-bunching is de-
scribed in Ref. [6].

In order to solve the equation of motion for the par-
ticles in the trap, we choose, as suggested by Pedersen
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et al. [2], to represent the electrostatic trap as a one-
dimensional potential well with sloping (soft) walls (see
Fig. 1):
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where L is the length of the field-free region between
the mirrors, and F is the electric field generated by the
potential wall, representing the field produced by the
mirror electrodes in the real trap. The problem to be
solved is the motion of N charged particles of identical
mass m and charge g. We represent the interaction be-
tween the various particles in the bunch using the mean
field approximation [2], and we analyze the dynamics of a
single (test) particle with mass m and charge ¢, relative to
a homogeneously charged sphere of radius R, and of mass
Nm, with a charge density p so that its total charge is Q =
Ng, where N > 1.
The Hamiltonian for the system is given by
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FIG. 1. The one-dimensional potential used in the model. The

charged particle (black dot) is located inside the homogene-
ously charged (same sign as for the particle) sphere, and both
move in the potential well.
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where x; and x, are the coordinates of the sphere and test
particles, respectlvely, p; and p, are their momenta,
Ulkx)=— —U is the potential inside the sphere, at a dis-
tance x from its center, and €, is the vacuum permittivity.

The equation of motion for the relative coordinates
(x, p) between the sphere and the test particle can be
obtained after separation of the center of mass coordi-
nates:

=
I
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where w = Nm/(N + 1) =~ m is the reduced mass, X is
the center-of-mass coordinate, and k = — 24

These equations of motion can be solved exactly, but it
is much more informative to develop first an approximate
solution, from which a simple condition for self-bunching
can be extracted. This solution (obtained under the im-
pulse approximation, vide infra) is valid only when the
force between the sphere and the test particle is repulsive
(k < 0), which is always the case for an ion trap.

We solve the problem with the help of mapping matri-
ces, which propagate the system in the (x, p) phase space,
producing a Poincaré map at the center of the trap. The
propagation of the particle-sphere system in the potential
above can be divided into three sections: the field-free
region, the mirror region, and the crossing point (X =
L/2) between these two regions at each transit. The map-
ping matrices in these three regions are, respectively,
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where 7, and #, are the times spent in the field-free region
and on the potential slope, respectively, so that the half
period T = 1, + 1.

A half cycle through the potential well (for particles
without interaction) is expressed using the propagation
sequence, starting from the center of the trap, moving
above the wall, and back to the center, as:
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Defining a slip factor
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where P is the initial center-of-mass momentum, the
propagation of n half oscillations is described by
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where m* = —m/n is the effective mass.

From Eq. (8) it is clear that if the initial relative
momentum p, is different from zero, the distance |x,|
between the sphere and the test particle will increase with
the number of iterations, unless the effective mass m™ is
infinite, corresponding to 1 = 0. This condition is well
known in time of flight mass spectrometers using
Reflectrons (which are electrostatic mirrors) [7] and oc-
curs when the additional time spent by the faster particles
inside the reflector (as they penetrate deeper) is exactly
compensated by the shorter time they spend in the field-
free region.

The effect of the particle-sphere interaction can be
included by integrating the relevant part of the equation
of motion over a half-oscillation time 7, assuming that
the force is small and does not change much during this
time (impulse approximation). This yields an additional

change in the relative momentum A p = —kTx which can
be written as a propagation matrix:
1 0

W) o

This approximation is valid only when the particle-
sphere force is repulsive (k < 0), as for an attractive force,
an oscillatory motion is obtained, and the assumption that
the force is approximately constant is incorrect.
Multiplying Egs. (6) and (9), we obtain the effective
propagation matrix including the interaction (the multi-
plication order does not change the final condition for
self-bunching),

1 -4 L
M=Mp M;=—{"_ n" | (10)

Note that the determinant of this matrix det(M) = 1
(area preserving map [8]). The oscillations of the particle-
sphere system in the potential well can be expressed by n
multiplications of this matrix. Of interest for the present
case are the conditions for which the relative motion in
the phase space (x, p) is bound for any value of n, and the
maximum distance between the center of the sphere and
the test particle is smaller than the radius of the sphere.

Two conditions can be obtained to satisfy these re-
quirements. In general, a bound trajectory in the (x, p)
phase space will be obtained when |Trace(M)| <2 [8].
Applying this to Eq. (10) yields the following general
stability condition:

kT?
0<-— <4 (11)
m

The requirement that the maximum displacement of
the test particle has to be smaller than the sphere radius
R, can be obtained from the largest deviation in the x
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coordinate in the Poincaré section produced by the map-
ping given in Eq. (10). This yields the following confine-
ment condition:

2 n P
x5+ 2(xopoT — )
oy = I < RS, (12)
1+ 7]4m

Assuming that k is small [relative to 4m/(nT?)], which
is the case relevant for both the experiment performed by
Pedersen et al. [1,2] and the impulse approximation, and
letting x, = Ry/2, Eq. (12) can be written as

= 4”76019(2)’
mqR3

13)

where we have also used the fact that Ry > 21 p,T/3m.

The results obtained in Eqgs. (11) and (13) demonstrate
that the relative motion between the test particle and the
sphere can, under certain conditions, be bound (self-
bunching) and that such an effect is due to the combina-
tion of the ion-ion interaction and the special kinematics
which is the result of the shape of the external potential
V(X). It can be shown that the exact dependence of the
force on the particle-sphere distance is not critical and
that other dependencies would yield similar propagation
matrices, which under the condition that their traces are
less than 2 yield an analogous condition to the one in
Eq. (11).

For the inequality of Eq. (11) to be true when k£ <0
(repulsive interaction), the effective mass m* must be
negative. Such a requirement is equivalent to [see Eq. (7)]

dT
d| Pyl

n>0 or > 0. 14)
This result is similar to the condition stated by Pedersen
et al. [see Eq. (26) in Ref. [2]], which was deduced
empirically and was shown to be in excellent agreement
with both the experimental data and numerical simula-
tions. As explained in Ref. [2], the physical reason behind
the kinematical condition expressed in Eq. (14) is that in
such a case, the overall effect of the repulsive Coulomb
interaction is to speed up the slower particles and to slow
down the faster ones, keeping the bunch length constant.

Equation (13) demonstrates that there is a minimum
density required for stabilizing a bunch of particles of
size ~2R,. The dependence of the minimum charge
density on p, is as expected, i.e., if the momentum spread
of the particles is large, a higher charge density is re-
quired, in agreement with the simulation performed in
Ref. [2]. A numerical evaluation of Eq. (13) is consistent
with the ion densities used in the experiments [1,2].

The equations of motion can be solved exactly for both
a particle-sphere attractive or repulsive interaction. In
such a case, the mapping matrices are rather complicated
(more details will be given in a future publication), but it
is possible to arrive at a compact form for the stability
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(15)
where w = /k/m.

Figure 2 shows the stability condition graphically for
various values of k/m as a function of nT? [see Eq. (11)].
This parametrization allows one to separate the quanti-
ties depending on the particle properties (k and m) from
the properties of the external potential (n and T'). The
hatched area represents the region of stability obtained
under the impulse approximation as given in Eq. (11) (for
k < 0 only), while the shaded area represents the region of
stability as given by Eq. (15). Figure 2 shows clearly that
for k < 0, the stability condition > 0 holds, as no stable
configurations can be found in the lower left quarter of
the plot. It is also interesting to point out that for k > 0,
the system can be unbound, even though the force between
the particle and the sphere is attractive.

The self-bunching effect described above (for k < 0) is
related to the so-called negative mass instability which
was first introduced by Nielsen, Sessler, and Symon in
1959 [9] for relativistic circular accelerators or storage
rings and extensively considered in a number of both
experimental and theoretical works [10]. In these ma-
chines, the negative mass instability occurs when, for
example, the angular velocity decreases with increasing
energy, a situation occurring above the so-called transi-
tion energy. This effect has been, to our knowledge,
observed only in accelerators working at relativistic
energies, and the theoretical treatment has been
implemented using the Vlasov equation [10].

3

k/m (108 3'2)
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FIG. 2 (color online). Stability diagram for the system de-
scribed in Fig. 1. The hatched area represents the stability
condition as expressed in Eq. (11) (for £k < 0 only); the shaded
area is the stable (self-bunching) region, obtained from the
exact solution, Eq. (15).

283204-3



VOLUME 89, NUMBER 28

PHYSICAL REVIEW LETTERS

31 DECEMBER 2002

10
132
_ 8 Xe 131y
2
E
S
£ 61
<
2
EN
2 -
s JL
?182 1183 1184 1185 1186 1187 1188 1189 1190
Frequency (kHz)
FIG. 3. Frequency spectrum obtained by fast Fourier trans-

form of the pickup signal when a bunch comprising two
isotopes of singly charged xenon ions is injected into the
trap. Only the seventh harmonics are shown.

However, unlike the large accelerators where the nega-
tive mass instability is a nuisance, it leads to an interest-
ing application in the electrostatic trap. The self-bunching
effect, discovered by Pedersen et al [1,2] and theoreti-
cally explained here, shows that it is possible to trap a
bunch without its size changing with time. Since the
oscillation frequency of the ions in the trap is propor-
tional to 4/g/m and the shape of the signal induced by the
bunch on a capacitive pickup near the center of the trap is
independent of time, a measurement of the oscillation
frequency directly yields a mass spectrum of the stored
ions, under the conditions given in Eqs. (11) and (13).

The application of our trap as a folded, time-of-flight
(TOF) mass spectrometer, albeit without self-bunching,
has been previously described [11]. A mass resolution of
Am/m = 3.5 X 107* for m = 40 was obtained. Figure 3
shows a frequency spectrum of data taken in the same
instrument, in the self-bunching configuration. Two iso-
topes of xenon, 3'Xe™ and '3?Xe*, were injected into the
trap with a kinetic energy of 4.2 keV. The signal from the
pickup was recorded for 300 ms, and the Fourier trans-
form in Fig. 3 shows the seventh harmonics. The width of
the peaks (about 1 1/2 channels wide) is less than 4 Hz,
which corresponds to Am/m =2Af/f ~7 X 1076,
while the distance between the peaks is consistent with
the mass difference between the two isotopes. As the
detection efficiency of the capacitive pickup is mass in-
dependent, and trapping of very heavy species is possible
in this electrostatic trap, such a system is well suited for
heavy masses, where the detectors in standard TOF spec-
trometers are less efficient. In principle, the mass resolu-
tion is proportional to the measuring time, so that even
higher resolution is feasible. In practice, however, there
are several limiting factors. The most important one is the
finite lifetime of the bunch in the trap (about 300 ms with
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the configuration described in Ref. [2]), which limits the
overall measuring time to about 1 s at a background
pressure of 5 X 107! T. In any case, the resolution ob-
tained here is superior to the one obtained in standard
TOF mass spectrometry [12] and approaches the values
measured using the Fourier transform ion cyclotron reso-
nance (FTICR) technique [13], which is considered to be
the most precise technique of general use available today
[14], but necessitates superconductor magnets to achieve
high resolution. Additional studies are needed to under-
stand the limit of the mass separation: Preliminary data
show that when the mass difference between two species
is very small, they tend to produce a single bunch under
the self-bunching conditions, a phenomenon known in
FTICR as well, and called peak coalescence [13].

As the theoretical model developed here is quite gen-
eral, the negative mass instability is likely to be observed
in other experimental setups where interacting particles
are trapped and in motion in a nonharmonic potential.
Moreover, the exact solution demonstrates that, even
when the force between the particles is attractive, non-
trivial behavior can be expected. The implications of this
result to other fields, such as astronomy and planetary
sciences, may be worth investigating.
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