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The self-energy and the vertex radiative corrections to the effect of parity nonconservation in heavy
atoms are calculated analytically in orders Z�2 and Z2�3 ln��C=r0�, where �C and r0 are the Compton
wavelength and the nuclear radius, respectively. The sum of the radiative corrections is �0:85% for Cs
and �1:41% for Tl. Using these results, we have performed analysis of the experimental data on atomic
parity nonconservation. The values obtained for the nuclear weak charge, QW � �72:90�28�exp�35�theor
for Cs, and QW � �116:7�1:2�exp�3:4�theor for Tl, agree with predictions of the standard model. As an
application of our approach, we have also calculated analytically the dependence of the Lamb shift on
the finite size of the nucleus.
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stant. The simplest correction of this type is due to the
Uehling potential. It has been calculated numerically in

states with different energies. However, these are states of
the external atomic electron, say 6s; 6p; 7s; . . . states in
Atomic parity nonconservation (PNC) has now been
measured in bismuth [1], lead [2], thallium [3], and
cesium [4]. Analysis of the data provides an important
test of the standard electroweak model and imposes con-
straints on new physics beyond the model (see Ref. [5]).
The analysis is based on the atomic many-body calcula-
tions for Tl, Pb, and Bi [6] and for Cs [7,8] (see also more
recent Refs. [9,10]). The accuracy of both experiments and
the theory is best for Cs. Therefore, this atom provides the
most important information on the standard model in the
low-energy regime. The analysis performed in Ref. [4]
has indicated a deviation of the measured weak charge
value from that predicted by the standard model by
2.5 standard deviations 	.

In the many-body calculations [6–8], the Coulomb
interaction between electrons was taken into account,
while the magnetic interaction was neglected. The con-
tribution of the magnetic (Breit) electron-electron inter-
action was calculated in papers [11,12]. It proved to be
much larger than a naive estimate, and it shifted the
theoretical prediction for PNC in Cs.

Radiative correction to the nuclear weak charge due to
renormalization from the scale of theW-boson mass down
to zero momentum had been calculated a long time ago
(see Ref. [13]). This correction is always included in the
analysis of data. However, another important class of
radiative corrections was omitted in the analysis of
atomic PNC. This fact has been pointed out in an analysis
[14] that demonstrated that there are corrections �Z�2

caused by the collective electric field of the nucleus. Here
Z is the nuclear charge and � is the fine structure con-
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Ref. [15] and analytically in our paper [16]. In that paper
[16], we have also analyzed the general structure of the
radiative corrections caused by the collective electric
field. It has been shown that, as well as the usual pertur-
bative parameter Z�, there is an additional parameter
ln��C=r0�, where �C is the electron Compton wavelength
and r0 is the nuclear radius.

In this Letter, we present the results of calculations of
the radiative corrections to the atomic PNC effect in
orders Z�2 and Z2�3 ln��C=r0�. Details of calculations
will be presented elsewhere [17]. Using our results, we
reanalyze the experimental data. Agreement with the
standard model is excellent. As an application of our
approach, we have also calculated the dependence of the
Lamb shift on the finite size of the nucleus. Agreement of
our analytical formula with results of previous computa-
tions [18,19] is perfect.

The strong relativistic enhancement makes PNC ra-
diative corrections different from previously considered
radiative corrections to the hyperfine structure. The
relativistic enhancement factor is proportional to R�
��C=�Z�r0�2�1���, where � �

���������������������
1� �Z��2

p
. The factor is

R � 3 for Cs and R � 9 for Tl, Pb, and Bi [20]. The
logarithmic enhancement of radiative corrections men-
tioned above is closely related to the existence of the
factor R. The Feynman diagram for the leading con-
tribution to the PNC matrix element between p1=2 and
s1=2 states, as well as diagrams for radiative corrections,
are shown in Fig. 1(a) and Figs. 1(b)–1(f), respectively.
Strictly speaking, the diagrams in Fig. 1 are not quite well
defined because they describe the matrix element between
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FIG. 2. ��Z�� self-energy and vertex radiative corrections.
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FIG. 1. (a) Leading contribution to the PNC matrix element.
(b)–(f) Radiative corrections. The double line is the exact
electron Green’s function in the Coulomb field of the nucleus;
the cross denotes the nucleus; the zigzag and the dashed lines
denote Z boson and photon, respectively.
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Cs, that have energies of the order of m�2. Therefore the
uncertainty in the definition of the diagrams appears only
in the order �3�Z��, which we do not consider in the
present work. The diagram Fig. 1(b) corresponds to a
modification of the electron wave function due to the
vacuum polarization. This correction, calculated analyti-
cally in Ref. [16], reads

�b � �
�
1

4
Z��

2�Z��2

3��
�ln2�b�C=r0� � f	

�
; (1)

where b � exp�1=�2�� � C� 5=6	, C � 0:577 is the
Euler constant, and f� 1 is some smooth function of
Z�, independent of r0. Hereafter, we denote by � the
relative value of the correction. So, Eq. (1) represents
the ratio of diagrams Fig. 1(b) and 1(a).

The renormalization of the nuclear weak charge QW

from the scale of the W-boson mass down to q � 0 was
performed in Ref. [13]. However, as has been pointed out
in Ref. [16], atomic experiments correspond to q�
1=r0 � 30 MeV. The correction due to renormalization
from q � 0 to q � 1=r0 is described by diagrams Fig. 1(c)
and 1(d). It has the form [16]

�cd �
4�Z
3�QW

�1� 4 sin2�W� ln��C=r0� � �0:1%; (2)

where �W is the Weinberg angle, sin2�W � 0:2230 (see
Ref. [5]).

Diagrams Figs. 1(e) and 1(f) correspond to the con-
tributions of the electron self-energy operator and the
vertex operator, respectively. Neither of these diagrams
is invariant with respect to the gauge transformation of
the electromagnetic field. However, their sum is gauge
invariant. It has been demonstrated in Ref. [16] that the
correction �e � �f is of the form

�ef � �e � �f � A ln�b�C=r0� � B; (3)

where A and B are functions of Z�, and the constant b is
defined after Eq. (1). In the leading approximation in the
parameter Z�, the functions are A � �a2=����Z��2 and
B � a1��Z��. In Ref. [16], we have also obtained pre-
liminary estimates for the coefficients a1 and a2. The
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estimates were based on an assumption of analogy be-
tween the polarization operator and the self-energy op-
erator. This assumption and, hence, the preliminary
estimates proved to be wrong. In the present work, we
calculate the coefficients a1 and a2 exactly.

The simplest part of the work is the calculation of the
��Z�� contribution to B. It is convenient to use the Fried-
Yennie gauge [21] together with the effective operators
approach [22] where the corrections under discussion
coincide with those for the ��p structure in the forward
scattering amplitude (see Fig. 2). The result of our calcu-
lation for the nonlogarithmic term in Eq. (3) reads

B � ���Z��� 712 � 2 ln2�: (4)

For calculation of the function A [the logarithmic part
in Eq. (3)], we have used the Feynman gauge. There are
two contributions to A, the self-energy contribution, ASE,
given by the diagram Fig. 1(e), and the vertex contribu-
tion AV given by Fig. 1(f). It is convenient to represent the
self-energy operator as a series in powers of the Coulomb
field of the nucleus,

P
�

P
0 �

P
1 �

P
2 � . . . (see Fig. 3),

and to perform calculations in momentum space.
Distances r0 
 r
 �C, which give rise to the logarith-
mic terms, correspond to momenta m
 p
 1=r0,
where m is the electron mass. Therefore, the mass and
the electron binding energy can be neglected in electron
propagators. It is necessary to make the ultraviolet regu-
larization of the operators

P
0 and

P
1 . Each of the

operators depends on the parameter of this regularization.
However, the sum

P
01 �

P
0 �

P
1 is independent of the

regularization parameter because of the Ward identity.
The operator

P
2 does not require any regularization.

Solution of the Dirac equation, taking account of the
self-energy operator and subsequent calculation of the
PNC matrix element, gives the following contributions
of

P
01 and

P
2 to ASE:

A01 � �
��Z��2

�
; A2 � �

��Z��2

6�
��2 � 9�;

ASE � A01 � A2 � �
��Z��2

6�
��2 � 3�:

(5)

Next, we consider the logarithmic contribution of the
vertex operator described by Fig. 1(f). The coordinate
representation is the most convenient for this part of the
problem. We have used an integral representation for the
Green’s function derived in Ref. [23] exactly in Z�.
Keeping in mind the contact nature of the PNC inter-
action and the logarithmic accuracy of the calculation,
one can demonstrate that only the angular momentum
283003-2
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FIG. 4. Relative radiative corrections (%) for the PNC and for
the finite-nuclear-size effects versus the nuclear charge Z. The
long-dashed line shows the correction �ef given by Eq. (8)
[Figs. 1(e) and 1(f)]. The solid line shows the total radiative
correction to the PNC effect that includes both �ef and �b
[Eq. (1), Fig. 1(b)]. The dashed line shows the correction �s
given by Eq. (9). Results of computations of �s for 1s and 2s
states [18,19] are shown by circles and diamonds, respectively.

...

FIG. 3. The self-energy expanded in powers of the Coulomb
field. The solid line is the free electron Green’s function.
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j � 1=2 is significant in the partial wave expansion of
the electron Green’s function in the external Coulomb
field. A part of the vertex independent of Z� requires
an ultraviolet regularization and, hence, is dependent of
the regularization parameter. However, due to the Ward
identity, the contribution corresponding to this part ex-
actly cancels out the renormalization of the wave function
(see, e.g., Ref. [24]). Another part is dependent on Z� and
gives the following contribution to the logarithmic term
in Eq. (3):

AV � �
��Z��2

�

�
17

4
�
�2

3

�
: (6)

Together with Eq. (5), this gives the final result for A:

A � �
��Z��2

�

�
15

4
�
�2

6

�
: (7)

Thus, according to Eqs. (3), (4), and (7), the total relative
correction to the PNC matrix element due to the self-
energy and the vertex operators reads

�ef � ��
�
�Z��

�
7

12
� 2 ln2

�

�
�Z��2

�

�
15

4
�
�2

6

�
ln�b�C=r0�

�
: (8)

This correction versus the nuclear charge Z (the
long-dashed line) is plotted in Fig. 4. The leading unac-
counted contribution in (8) is of the order of �Z2�3=�.
For Cs (Z � 55) this gives 5%–10% uncertainty in �ef.
The solid line in Fig. 4 shows the total radiative correc-
tion to the PNC effect that includes both �ef [Eq. (8)]
and �b [Eq. (1)].

The radiative shift of the atomic energy levels (Lamb
shift) depends on the finite nuclear size. This correction
has a structure very similar to that of the PNC radiative
correction because the effective sizes of the perturbation
sources in both cases are much smaller than �C. The self-
energy and the vertex corrections to the finite-nuclear-
size effect (SEVFNS) for the s1=2 state have previously
been calculated in order ��Z�� in Refs. [25,26]. The
corrections for 1s1=2, 2s1=2, and 2p1=2 states have been
calculated numerically, exactly in Z�, in Refs. [18,27,28].
The structure of higher order Z� corrections and their
logarithmic dependence on the nuclear size has not been
understood.We have applied our approach to the SEVFNS
problem and found the following expression for the
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s1=2-state relative correction:

�s � ��
�
�Z��

�
23

4
� 4 ln2

�

�
�Z��2

�

�
15

4
�
�2

6

�
ln�b�C=r0�

�
: (9)

The term linear in Z� agrees with results of Refs. [25,26].
The logarithmic term coincides with that in Eq. (8) for
the PNC correction. Moreover, the logarithmic term in
the SEVFNS correction �p for the p1=2 state is also equal
to that in Eqs. (8) and (9). The reason for this equality is
very simple. The logarithmic terms come from small
distances (r
 �C) where the electron mass can be ne-
glected. When the mass is neglected, the relative matrix
elements for the PNC radiative correction and for
SEVFNS are equal. The correction �s given by Eq. (9)
is shown in Fig. 4 by the dashed line. Results of the
computations [18,19] for 1s and 2s states are shown by
circles and diamonds, respectively. The agreement is ex-
cellent up to Z � 90. This confirms the validity of our
approach. The correction �p has a more complex struc-
ture than that of �ef and �s. Results of calculation of �p
will be published separately [29].

It has been recently suggested in Ref. [30] that the
following ‘‘precise relation’’ �ef � ��s � �p�=2 is valid.
Values of the corrections obtained in our work do not
agree with this relation. The ‘‘derivation’’ in Ref. [30] is
based on the wrong assumption that there is a gauge in
which the vertex contributions to �ef, �s, and �p vanish
simultaneously. Although it is possible to set the vertex
correction to each of these quantities to zero by choosing
283003-3
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an appropriate gauge, these are three different gauges. So
the above relation is wrong.

Now we can perform a consistent analysis of the ex-
perimental data on atomic parity violation since all the
contributions are known. In our analysis for Cs, we have
included the theoretical value of the PNC amplitude from
Refs. [7–10] as well as the �0:61% correction due to the
Breit interaction [12], the �0:85% radiative correction
calculated in the present work, the �0:42% vacuum po-
larization correction [15,16], the �0:2% neutron skin
correction [31], the �0:08% correction due to the renor-
malization of QW from the atomic momentum transfer
q� 30 MeV down to q � 0 [16], and the �0:04% con-
tribution from the electron-electron weak interaction
[16]. The theoretical uncertainty from the Z2�3=� term
unaccounted in (8) is about 0:05%–0:1%. Using these
results, we obtain from the data [4] the following value
of the nuclear weak charge QW at zero momentum
transfer

Cs : QW � �72:90� �0:28�exp � �0:35�theor: (10)

This value agrees with prediction of the standard model,
QW � �73:09� 0:03 (see Ref. [5]). We have used the
neutron skin correction in our analysis. However, in our
opinion, the status of this correction is not quite clear
because data on the neutron distribution used in Ref. [31]
are not quite consistent with the data on neutron dis-
tributions obtained from proton scattering (see, e.g.,
Ref. [32]).

In the analysis for Tl, we have included the theoretical
value of the PNC amplitude from Refs. [6], as well as the
�0:88% correction due to the Breit interaction [33], the
�1:41% radiative correction calculated in the present
work, the �0:90% vacuum polarization correction [16],
the �0:2% neutron skin correction, the �0:08% correc-
tion due to the renormalization of QW from the atomic
momentum transfer q� 30 MeV down to q � 0 [16], and
the �0:01% contribution from the electron-electron weak
interaction [16]. Using these theoretical results, we obtain
from the data [3] the following value of the nuclear weak
charge QW at zero momentum transfer:

Tl : QW � �116:7� �1:2�exp � �3:4�theor: (11)

This agrees with prediction of the standard model,QW �
�116:7� 0:1 (see Ref. [5]).

In conclusion, we have calculated analytically for the
first time the Z�2 and Z2�3 ln��C=r0� radiative correc-
tions to the effect of atomic parity violation. This calcu-
lation has allowed us to perform a consistent analysis of
the experimental data. Agreement with the standard
model is within 0:5	.
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