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QED Radiative Corrections to Parity Nonconservation in Heavy Atoms
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The self-energy and vertex QED radiative corrections [� Z�2f�Z��] are shown to give a large
negative contribution to the parity nonconserving (PNC) amplitude in heavy atoms. The correction
�0:73�20�% found for the 6s-7s PNC amplitude in 133Cs brings the experimental result for this
transition into agreement with the standard model. The calculations are based on a new relation that
expresses the radiative corrections to the PNC matrix element via corrections to the energy shifts
induced by the finite nuclear size.
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corrections of this type were considered previously by
Marciano and Sirlin [17] and Lynn and Sandars [18] using

The operator HPNC in (2) describes the PNC part of the
electron Hamiltonian induced by the Z-boson exchange,
It has been discovered recently that there exists a
consistent deviation of experimental data on parity non-
conservation (PNC) in atoms from predictions of the
standard model. This paper demonstrates that this contra-
diction is removed by the self-energy and vertex QED
radiative corrections, which prove to be much larger than
anticipated. The corrections are evaluated with the help
of a new relation that expresses them via similar radiative
corrections to the energy shifts induced by the finite
nuclear size (FNS).

Experimental investigation of the 6s-7s PNC ampli-
tude in 133Cs initiated by Bouchiat and Bouchiat [1], was
carried further by Gilbert and Wieman [2], and by Wood
et al. [3], who reduced the error to 0:3%, sparking an
interest in the atomic PNC calculations that are crucial
for the analysis of the experimental data. Accurate pre-
vious calculations of Refs. [4,5] have recently been revis-
ited by Kozlov et al. [6] and Dzuba et al. [7,8]. Bennett
and Wieman [9] analyzed the theoretical data [4,5], com-
paring it with available experimental data on dipole
amplitudes, polarizabilities, and hyperfine constants for
Cs, and suggested that the theoretical error for the PNC
amplitude should be reduced from 1% to 0:4%. It has been
recognized recently that several, previously neglected
phenomena contribute at the required level of accuracy.
Derevianko [10] found that the Breit corrections give
�0:6%, the value confirmed in [6,11]. Sushkov [12]
pointed out that the radiative corrections may be compa-
rable with the Breit corrections. Johnson et al. [13] dem-
onstrated that, indeed, the QED vacuum polarization
gives 0:4%, the value confirmed in [7,14,15].

Reference [9] indicates that there is a 2:3� deviation of
the weak charge QW extracted from the atomic PNC
amplitude [3] from predictions of the standard model
[16]. More recent works [8,13], in which the Breit correc-
tions (�0:6%) and the QED vacuum polarization (0:4%)
were included, give similar deviations 2:2� and 2:0�,
respectively. We show that this contradiction is removed
by the self-energy and vertex radiative corrections. The
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the plane wave approximation that resulted in a small
value �0:1%. The expectation of Ref. [13] was that the
Coulomb field of the atomic nucleus should not produce
any drastic effect on these corrections, which should
remain small. This assessment was supported by
Ref. [14], which presented results of calculations indicat-
ing that the self-energy corrections are small. Note, how-
ever, that a rough estimate of the self-energy contribu-
tion in Ref. [7] (�� 0:6%) demonstrated that it may be
significant.

Let us show that there is an approximate relation that
expresses the QED radiative corrections to the PNC ma-
trix element via similar radiative corrections to the en-
ergy shifts of the atomic electron induced by the FNS.
This relation can be presented as

�PNC; sp � 1
2 ��FNS; s � �FNS; p�; (1)

where �PNC; sp is the relative radiative correction to the
PNC matrix element between s1=2 and p1=2 orbitals

�PNC; sp �
h s;1=2jHPNCj p;1=2irad

h s;1=2jHPNCj p;1=2i
: (2)

The energy difference between the considered opposite
parity orbitals �1 eV is much lower than a typical ex-
citation energy �m�0:5 MeV (relativistic units �h�c�1
are used, if not stated otherwise) that governs the radia-
tive corrections. We can therefore neglect this difference
assuming that Es;1=2 �Ep;1=2. This assumption makes
the correction h s;1=2jHPNCj p;1=2i

rad gauge invariant.
(To make this argument even stronger, one can use the
Coulomb approximation for the atomic field and consider
the degenerate ns1=2 and np1=2 levels.) Similarly, �FNS; s
and �FNS;p are the relative radiative corrections to the
FNS energy shifts EFNS; s, EFNS;p, for the chosen s1=2 and
p1=2 electron states,

�FNS; l�Erad
FNS; l=EFNS; l; l� s;p: (3)
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HPNC ��2
���

2
p

��1GFQW��r��5: (4)

Here GF and QW are the Fermi constant and the nuclear
weak charge, and ��r� is the nuclear density. The FNS
energy shifts can be presented as matrix elements of the
potential VFNS�r�, which describes the deviation of the
nuclear potential from the pure Coulomb one, EFNS; l�
h l;1=2jVFNSj l;1=2i, l� s;p. Equality (1) may be estab-
lished for the sum of all QED radiative corrections
[�Z�2f�Z��], or specified for any gauge invariant class
of them. We concentrate our attention on the self-energy
and vertex corrections in the lowest order of the pertur-
bation theory described by the Feynman diagrams in
Fig. 1, calling them the e-line corrections, though the
vacuum polarization is also briefly discussed below.

The intermediate electron states in diagrams of
Fig. 1 are described by the propagator ĜG � ���p

� �
�0U�m��1, with p� � ��;�ir�, where � is the virtual
electron energy, and U � U�r� is the atomic potential.
The external legs describe the wave functions  s;1=2�r�
and  p;1=2�r� for the considered s1=2 and p1=2 levels. We
will need below the following relations:

�5ĜG � �ĜG�5; (5)

 s;1=2�r� � C�5 p;1=2�r�; (6)

that are valid for short distances r� m�1. In this region,
one can neglect the mass term in the electron propagator
ĜG. Then, using the identity �5�� � ����5, one derives
(5). Equation (6) can be verified using the Coulomb
approximation, which is valid at small distances, for the
atomic wave functions. The constant C in (6), which de-
pends on normalization conditions, is irrelevant for us
because we are interested in relative quantities in Eq. (1).

Consider the diagrams of Fig. 1 for the PNC amplitude,
assuming that their left and right legs describe the s1=2
and p1=2 states, respectively. The PNC interaction (4) is
located at small distances rn � m�1, where rn is the
nuclear radius. We can use this fact taking the �5 matrix
from Eq. (4) and, relying on Eq. (6), transforming the
 p;1=2�r� external wave function into the  s;1=2�r� wave
function. This transformation shows that we can look at
the diagram 1(b) as the one that describes the diagonal
s1=2 � s1=2 transition induced by an effective scalar po-
tential VPNC; eff�r� � �2

���

2
p

��1GFQW ��r� that arises when
we drop the �5 matrix in the pseudoscalar Hamiltonian in
Eq. (4). Considering the same diagram 1(b) for the FNS
energy shift for the s1=2 level, one observes its close
similarity with the PNC problem. In both cases the dia-
gram 1(b) describes the s1=2 � s1=2 transitions that are
a b c

FIG. 1. The QED vertex (a) and self-energy (b),(c) correc-
tions to the PNC matrix element and the FNS energy shifts.
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induced by the short-range scalar potentials. The only
distinction comes from the fact that the potentials
VPNC; eff�r� and VFNS�r� exhibit different shapes. How-
ever, this difference manifests itself only via a nor-
malization factor that is canceled out when we consider
relative quantities in Eq. (1). We see that the relative
contribution of the diagram 1(b) for the PNC amplitude
equals half the contribution of the total self-energy cor-
rection to �FNS; s. The mentioned factor one-half appears
because the total self-energy correction to the FNS en-
ergy shift is given by two diagrams 1(b) and 1(c), which
are identical for the FNS problem. Similarly, we verify
that the contribution of the diagram 1(c) to �PNC; sp

equals half of the self-energy correction to �FNS; p. This
discussion shows that the diagrams 1(b) and 1(c) comply
with Eq. (1).

Consider the vertex correction in Fig. 1(a). A range of
distances rrad, where the radiation processes take place, is
proportional to the Compton radius, rrad �m�1, and also
depends on the chosen gauge for the electromagnetic field.
(For example, the conventional length gauge favors larger
distances, while velocity and acceleration gauges enhance
contribution of smaller distances.) Therefore choosing the
gauge appropriately we can force the radiative matrix
element to originate from small distances rrad <m�1.
Using in this region Eq. (5), one commutes the �5 matrix
from the weak interaction vertex (4) with the electron
propagator and the electromagnetic vertex and brings it to
the side, where Eq. (6) for the external wave function is
used. This procedure shows that the relative contribution
of the vertex diagram 1(a) to the PNC amplitude equals
the relative contribution of the same diagram to the FNS
energy shift. Deriving this conclusion, we again use the
fact that the shape of the short-range potential is irrele-
vant for relative quantities. One can bring the �5 matrix
in contact with either the right or the left external leg.
Using both opportunities, one proves that the vertex dia-
gram 1(a) gives the same contribution to the three differ-
ent quantities: to the PNC amplitude, FNS energy shift
for the s1=2 state, and FNS energy shift for the p1=2 state,
all three measured in relative units. This shows that the
vertex contributions satisfy Eq. (1) as well [19].

The discussion above shows that all three diagrams in
Fig. 1 comply with Eq. (1), thus verifying that it holds for
the e-line corrections. The derivation above used the
gauge in which the radiation processes for the diagram
1(a) take place mostly at small separations rrad <m�1.
They should also take place outside the nucleus rn < rrad,
as is necessary to justify our presumption that the shape
of the potential inside the nucleus is irrelevant. From the
last two inequalities, we find that our derivation relies on
a parameter mrn � 0:01. This determines the magnitude,
few percent, of the error of Eq. (1)

Similarly, we consider the contribution of the QED
vacuum polarization. Reference [15] presents explicit
variations of s1=2 and p1=2 wave functions at the origin
induced by the vacuum polarization [see Eq. (43) of
283002-2
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FIG. 2. The relative radiative corrections (in %) induced by
the diagrams of Fig. 1. Thick, thin, and long-dashed lines—
corrections for FNS energy shifts for 1s1=2, 2s1=2, and 2p1=2
levels extracted from [22]; short-dashed line —prediction of
Eq. (1) for the PNC matrix element; dash-dotted line — cor-
rection to the HFI [27].
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Ref. [15]]. Using these wave functions to calculate correc-
tions to the PNC matrix element and FNS energy shifts,
we find that for the vacuum polarization Eq. (1) holds
as well.

Note that we do not consider here radiative corrections
of the order ��=� which appear in the plane wave
approximation. These contributions have been included
into the radiative corrections to the weak chargeQW (and
the renormalization of the charge and electron mass in
the case of FNS energy shifts). Correspondingly, we
subtract the contribution of the plane waves from
Eq. (1), considering only the part of the corrections that
depends on the atomic potential �Z�2f�Z��. For heavy
atoms, this subtlety is insignificant numerically because
the considered Z-dependent part of the correction is big-
ger than the omitted Z-independent one, as we will
see below.

Equation (1) presents the e-line corrections to the PNC
matrix element, which are difficult to calculate, in terms
of the corrections to the FNS energy shifts that have been
well studied both numerically, by Johnson and Soff [20],
Blundell [21], Cheng et al. [22], and Lindgren et al. [23],
and analytically, by Pachucki [24] and Eides and Grotch
[25]. Reference [22] presents the e-line radiative correc-
tions to the FNS energy shifts for 1s1=2, 2s1=2, and 2p1=2
levels in hydrogenlike ions with atomic charges Z � 60,
70, 80, and 90. Equation (1) contains relative corrections;
therefore we need to calculate the FNS energy shifts
EFNS. We did this by solving the Dirac equation with
the conventional Fermi-type nuclear distribution ��r� �
�0=f1 � exp��r� a�=c�g. Parameters a; c were taken the
same as in [22], namely a � 0:523 fm and c chosen to
satisfy Rrms � 0:836A1=3 � 0:570 fm. Using the results of
[22] and this calculation, we obtained the relative radia-
tive corrections shown in Fig. 2. In order to include the
interesting case Z � 55 and to account for all values of
55 � Z � 90, we used interpolation formulas presented
in [22]. The relative corrections for the 1s and 2s levels
are approximately the same size. This indicates that the
radiative processes responsible for the correction take
place at separations much smaller than the K-shell radius,
r� �Z�m��1, which is consistent with the assumption
r < m�1 above. For these separations, we can assume
that, first, the screening of the nuclear Coulomb field in
many-electron atoms does not produce any significant
effect, and, second, the relative corrections does not
depend on the atomic energy level because for small
separations all atomic ns1=2-wave functions exhibit simi-
lar behavior. These arguments remain valid for the p1=2
states as well, permitting us to presume that the results
shown in Fig. 2 for the 2s1=2 levels and 2p1=2 levels of
hydrogenlike ions remain valid for s1=2 and p1=2 states of
the valence electron in a many-electron atom. We obtain
the e-line radiative corrections for the PNC matrix ele-
ment using Eq. (1) that expresses them via the found
corrections to the FNS energy shifts. The found PNC
corrections, presented in Fig. 2 by the dotted line, are
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negative and large (much larger than the neglected
Z-independent part of the corrections).

Let us discuss the implications for the 6s-7s PNC
amplitude in 133Cs. The standard model value for the
nuclear weak charge for Cs [16] is

QW�133Cs� � � 73:09 � �0:03�: (7)

Reference [8] refined previous calculations of Ref. [4]
extracting from the experimental PNC amplitude of
Ref. [3] the weak charge

QW�133Cs� � � 72:18 � �0:29�expt � �0:36�theor; (8)

with the theoretical error 0:5%. It is consistent with
QW�133Cs� � � 72:21 � �0:28�expt � �0:34�theor that was
adopted in [13] by taking the average of the results of
Refs. [4–6], and accepting the theoretical error 0:4%
proposed in [9]. The weak charge in Eq. (8) deviates
from the standard model (7) by 2:0�.

The e-line radiative correction derived from results
presented in Fig. 2 is �0:73 � �0:20�%; the error reflects
the uncertainty of the radiative corrections to the FNS
energy shift for the 2p1=2 level in Cs Erad

FNS;2p;1=2 �

�0:0001�1� eV [26]. Equation (8) combined with the
e-line correction gives

QW�133Cs� � � 72:71 � �0:29�expt � �0:39�theor; (9)

which brings the PNC experimental amplitude of [3]
within the limits of the standard model (7). For heavier
atoms, the e-line corrections become larger, while the
error diminishes. For the Tl atom, which presents another
interesting case for applications, we find the e-line cor-
rection �1:61%.

Relations similar to (1) can be derived for any opera-
tor which is localized at distances smaller than the
Compton radius. One can even try to apply it to the
case of the hyperfine interaction (HFI), which has been
283002-3
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thoroughly investigated previously, see, e.g., [27,28] and
references therein, though the HFI has a long-range tail
�1=r3 that presents an obstacle for our method. However,
if convergence of the HFI matrix elements is fast, the
relation �FNS; s � �0HFI; s should hold. Here, �0

HFI; s is the
radiative correction to the HFI for s levels, the primed
notation indicates that the Z-independent Schwinger term
�=�2�� should be excluded (for heavy atoms this subtlety
is not important). Figure 2 shows the e-line contribution
to �0HFI; s that was extracted from [27] using interpola-
tion for all considered values of Z. It agrees semiquanti-
tatively with �FNS; s, deviation is less than 33%. Thus,
�FNS; 1s, �FNS; 2s, �FNS; 2p, and �0

HFI; s all exhibit similar
behavior; they all are negative and large regardless of the
perturbative operator considered and quantum numbers
of the wave functions involved, which is in line with the
main argument of this paper (see also follow-ups men-
tioned in [29]).

In conclusion, large QED self-energy and vertex cor-
rections to the parity nonconservation amplitude in heavy
atoms reconcile the experimental results of Wood et al. [3]
in Cs with the standard model.
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