
VOLUME 89, NUMBER 28 P H Y S I C A L R E V I E W L E T T E R S 31 DECEMBER 2002
Lowering of the Kinetic Energy in Interacting Quantum Systems
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Interactions never lower the ground state kinetic energy of a quantum system below the non-
interacting value. However, at nonzero temperature, where the system occupies a thermal distribution
of states, interactions can reduce the kinetic energy. This can be demonstrated from a first order weak
coupling expansion. Simulations (both variational and restricted path integral Monte Carlo) of the
electron gas model and dense hydrogen confirm this and show that in contrast to the ground state case,
at nonzero temperature the population of low momentum states can be increased relative to the free
Fermi distribution. This effect is not seen in simulations of liquid 3He.
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FIG. 1 (color online). Top: broadening of the ground state
electron gas momentum distribution at rs � 5 (dashed line)
and rs � 10 (dot-dashed line) caused by interactions. rs is the
electron sphere radius in units of the Bohr radius. The unit
discontinuity of the momentum distribution for the noninter-
acting system (solid line) at the Fermi surface is reduced by
28% and 42%, respectively. Corresponding increases in the
kinetic energy over the noninteracting case are 30% and
60%. Bottom: for 4He at T � 0 and P 
 0 roughly 92% of
the zero momentum condensate (black vertical bar along the y
axis) in the noninteracting Bose system is promoted to higher
This argument fails, however, when generalized to
nonzero temperature, T, where the system occupies a

momentum states (distribution given by dashed line) leading to
a kinetic energy increase of over 14 K per particle.
Introduction.—It is a common assumption that the ad-
dition of interactions to a noninteracting quantum system
will broaden the momentum distribution and increase the
kinetic energy (proportional to the second moment of the
momentum distribution). An intuitive understanding of
this follows from perhaps the first example encountered in
studying quantum mechanics, the particle in a box, where
the kinetic energy scales as the box size L�2. More gen-
erally the kinetic energy, given by the average curvature
of the wave function, is expected to scale as the
“localization length”�2. Since interactions typically lead
to an increase in local order, i.e., increased ‘‘localiza-
tion,’’ the kinetic energy is expected to increase.

For condensed matter scientists, two well ingrained
many body examples of this, illustrated in Fig. 1, are
the broadening of the free Fermi ground state momentum
distribution due to electron repulsion and the depletion of
the zero momentum condensate in a strongly interacting
Bose system such as 4He [1]. For the homogeneous elec-
tron gas, Fig. 1 (top) shows the promotion of low momen-
tum states to higher momentum and the reduction in the
step discontinuity at the Fermi surface [2–4]. Similarly
Fig. 1 (bottom) shows that the 100% condensation into the
zero momentum ground state of a noninteracting Bose
system is reduced to roughly 8% in 4He with the rest
going into an almost Gaussian distribution [5].

The proof of this assumption for systems at zero tem-
perature is an immediate consequence of the ground state
variational principle applied to the free particle Hamil-
tonian, H0, which states that K0 � h�0jH0j�0i is mini-
mized by �0, the true ground state wave function of H0.
Using any other wave function, such as the ground state,
�G, for an interacting system, H � H0 �U, leads to

K � h�GjH0j�Gi � K0; (1)

demonstrating that the kinetic energy, K, of the interact-
ing system is never lower than the free particle kinetic
energy, K0.
0031-9007=02=89(28)=280401(4)$20.00
thermal distribution of energy eigenstates. From the
Gibbs variational principle, the free energy functional,

F�		 � Tr�H0		 � kBTTr�	 ln		; (2)

takes its minimum value F�	0	 � K0 � TS0 for the equi-
librium density operator 	0 � e��H0=Tr�e��H0	, where
� � 1=kBT and kB is Boltzmann’s constant. Any other
 2002 The American Physical Society 280401-1
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FIG. 2. Behavior of free fermion (top) and free boson (bot-
tom) radial distribution functions for indicated temperatures
measured in terms of the Fermi temperature TF or condensa-
tion temperature Tc, respectively.
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normalized density operator, such as that for the interact-
ing system, 	 � e��H=Tr�e��H	, gives a higher value [6],

F�		 � K � TS � F�	0	 � K0 � TS0: (3)

The ground state inequality, Eq. (1), now generalizes to

K � K0 � T�S� S0�: (4)

Since interactions often increase order, the entropy S of
the interacting system can be less than that of the non-
interacting, S0, and S� S0 may be negative. This allows
Eq. (4) to be satisfied while the ground state inequality,
K � K0, is not. Jensen’s inequality for convex functions
assures that interactions will decrease the entropy for a
classical system, but for quantum systems, this depends
on details of the interaction as well as density and tem-
perature [7]. In general, at nonzero temperature nothing
forbids interactions from lowering the kinetic energy.

This kinetic energy lowering would be observed only
in an intermediate range of temperatures since in the high
temperature, classical limit, interactions effect only
equilibration rates, not the final Maxwellian momentum
distribution.

Weak coupling limit.—Not only is this lowering theo-
retically possible, it can be shown to occur for a variety of
weakly interacting physical systems using lowest order
thermodynamic perturbation theory. The change in the
Helmholtz free energy, F, to first order in the interaction
potential is

F � F0 � hUi0; (5)

where hUi0 is the potential averaged over the free particle
configurations. Since the total energy is given by E �
@��F�=@�, the first order change in the kinetic energy
from Eq. (5) is

K1 � �
@hUi0
@�

: (6)

For a single component system of N particles with pair
interaction, V�r�, the first order energy change reads

hUi0 � N
n
2

Z
g0�r�V�r�dr3; (7)

where n is number density. The first order kinetic energy
change

K1 � �TN
n
2

Z @g0�r�
@T

V�r�dr3 (8)

depends on the temperature dependence of the free par-
ticle radial distribution function, g0�r�.

As shown in Fig. 2, for both fermions and bosons
@g0�r�=@T can be positive at all r leading to a kinetic
energy decrease for repulsive interactions although for
quite different reasons in the two cases. For fermions the
increase of g0�r� with temperature is due to the filling in
of the ‘‘Fermi hole,’’ the region near the origin where due
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to antisymmetry, like-spin particles are excluded. The
size of this region is roughly the de Broglie thermal
wavelength which is proportional to 1=

����
T

p
.

For noninteracting bosons at T � 0, all particles are in
the zero momentum condensate and g0�r� � 1. As the
temperature increases particles are promoted from the
condensate and g0�r� increases at all r for T=Tc �
�2=5�2=3, where Tc is the Bose condensation temperature,
and thereafter at small r, reaching g0�0� � 2 at T � Tc
[8,9]. Since T@g0�r�=@T vanishes at T � 0, the ground
state inequality, Eq. (1), is not violated.

The mechanism for the narrowing of the electron gas
momentum distribution can be seen from the first order
shift in the free electron energy levels [10],

���k� � �
4�e2

�

X
k0�k

n0�k�
jk� k0j2

: (9)

The decrease of n0�k� with k leads to a larger lowering of
the energy levels at smaller k and thus to a population
redistribution and momentum distribution narrowing as
demonstrated in Fig. 3.

Simulation results.—For the electron gas, this weak
coupling expansion applies only at very high densities,
rs & 0:5, and is of little use for realistic condensed
matter densities. It is necessary to use more powerful
quantum many body simulation methods. Two such meth-
ods, path integral Monte Carlo (PIMC) [11,12] and a
variational trial density matrix method (VDM) [13],
have been used here to search for narrowing of the
momentum distribution in a variety of fermion systems.

Liquid 3He is a strongly coupled system. Because of its
steeply repulsive short ranged interactions the weak cou-
pling arguments of the preceding paragraphs do not
280401-2
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FIG. 4. Relative excess kinetic energy vs temperature for the
unpolarized electron gas at indicated rs values as calculated
from PIMC simulations with 66 particles in the periodic cell.
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FIG. 5 (color online). Proposed region for momentum nar-
rowing (K < K0) in the unpolarized electron gas (area above
the solid line) and in hydrogen plasma (area above the dot-
dashed line) as derived from PIMC simulations. The dashed
line indicates the compression path of inertial confinement
fusion [18]. The conditions near the core of the sun and a
low mass star (0.3 solar masses) are also indicated [19].
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FIG. 3 (color online). Example of momentum distribution
narrowing in the fully polarized electron gas at rs � 4 and
T � TFermi from simulations with 57 particles.
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apply. Restricted PIMC calculations using free particle
nodes for 3He at number density n � 0:016 36 �A�3 and
temperatures from 1 to 40 K show the kinetic energy to
be more than 5 K above the noninteracting value.
Narrowing of the momentum distribution is not found
for this system.

For the electron gas model both restricted PIMC and
VDM calculations find momentum distribution narrow-
ing. The effect is small, with the relative decrease of the
kinetic energy from its ideal value less than a few percent
[14,15], but well within the accuracy of the two methods.
The computation of momentum distribution for fermions
with PIMC (see Fig. 3) required extending the restricted
path integral technique to simulations with open
paths [16,17].

Figure 4 shows the difference in kinetic energy of the
homogeneous electron gas for different densities and
temperatures indicated by the degeneracy parameter
T=TFermi. For densities corresponding to rs & 4, a low-
ering of the kinetic energy with respect to the noninter-
acting value is found. The magnitude of the lowering
increases with density (smaller rs). The statistical uncer-
tainty of these results was estimated at rs � 1 and T �
TFermi by a study of finite size effects (using 14, 38, 66,
and 114 particles in the periodic simulation cell) and path
discretization errors (using 16, 32, and 64 time steps)
which gave �K � K0�=K0 � �0:023� 0:002. The region
of the effect, as predicted by PIMC simulations, is shown
in the high temperature and density phase diagram in
Fig. 5.

Simulations of dense hydrogen plasma [20] have also
indicated kinetic energy lowering, which we confirmed
and extended.We found a maximal lowering of �K � K0�=
K0 � �0:007� 0:001 for rs � 0:5 and T � TFermi. The
magnitude is reduced compared to the electron gas be-
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cause Coulomb interactions of electrons and protons
counteract the entropic lowering. This also results in a
reduction of the parameter region in the temperature and
density plane for which the effect can be observed.
However, in the limit of high density, the boundaries
for the electron gas model and for hydrogen converge
because interactions become weaker in the high density
limit. Figure 5 shows that the lowering region of hydro-
gen includes conditions near the core of the sun or other
low mass stars [19] as well as on the compression path of
inertial confinement fusion [18], indicating that hydrogen
280401-3
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is a potential candidate for experimental verification of
this effect. For both the electron gas and hydrogen in the
region where this effect occurs the pressure virial, 3PV �
2hKi � hUi, is dominated by changes in the potential
rather than kinetic energy; therefore experimental con-
firmation would probably require direct measurement of
the momentum distribution rather than equation of state.

Conclusions.—Analytical and numerical arguments
show that interactions can reduce the kinetic energy of
a quantum system below the corresponding noninteract-
ing value. The associated narrowing in the momentum
distribution can potentially be verified experimentally.
Prime examples are the Bose condensates in magnetic
traps, in which the momentum distribution can be in-
ferred by measuring the expansion rates after the mag-
netic field has been switched off. Sufficiently accurate
measurements of the momentum distribution could be
used to provide information about the nature of the inter-
actions of the trapped atoms.

Lowering of the kinetic energy was demonstrated in
the homogeneous electron gas model, one of the funda-
mental models in condensed matter physics and a well
studied example of a one-component plasma. Corrections
to the noninteracting kinetic energy are always positive at
zero temperature and vanish in the high temperature
limit, which makes it counterintuitive to expect lowering
at intermediate temperature. Research on the one-
component plasma has focused more on the internal en-
ergy, pressure, and correlation energy. However, the
kinetic energy is relevant for our understanding of quan-
tum systems and can be determined experimentally by
measuring the momentum distribution.

The effect, previously indicated but left uninterpreted
in dense hydrogen [20], is reconfirmed here. The argu-
ments presented above suggest that the kinetic energy
reduction should be present in weakly coupled systems
with repulsive pair interactions. Simulation evidence for
this effect was presented here only for Coulombic sys-
tems. More work is necessary to understand how these
arguments apply to other systems and where the entropic
reordering in the thermal population of states leading to a
lower kinetic energy can best be observed experimentally.
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