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Transverse NMR Relaxation as a Probe of Mesoscopic Structure
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Transverse NMR relaxation in a macroscopic sample is shown to be extremely sensitive to the
structure of mesoscopic magnetic susceptibility variations. Such a sensitivity is proposed as a novel
kind of contrast in the NMR measurements. For suspensions of arbitrary-shaped paramagnetic objects,
the transverse relaxation is found in the case of a small dephasing effect of an individual object. Strong
relaxation rate dependence on the objects’ shape agrees with experiments on whole blood. Demonstrated
structure sensitivity is a generic effect that arises in NMR relaxation in porous media, biological
systems, as well as in kinetics of diffusion limited reactions.

DOI: 10.1103/PhysRevLett.89.278101 PACS numbers: 87.61.–c, 76.60.Jx, 82.56.Lz
focused on the effect of paramagnetic inclusions of spe-
cific geometries (spheres [7,8] or cylinders simulating

randomly located paramagnetic objects (as described
later).
NMR as a structure probe is utilized in the fields as
diverse as chemistry, materials science, geology, and
biomedicine. Pristine specimens found in Nature, such
as rocks or biological tissues, possess a complex structure
at a mesocopic scale. This structure is of primary interest
in numerous applications. For example, rock porosity in
geology is important to assess the oil basin quality. In
biological tissues the mesoscopic scale is set by the size of
cells and blood vessels whose properties carry significant
diagnostic and physiological information.

It is the NMR monitored diffusion that is commonly
accepted as a probe of mesoscopic structure in both
inorganic [1] and living [2,3] specimens. In the present
Letter we propose a magnetic susceptibility contrast as a
structure probe. Susceptibility inhomogeneities are often
connected to the geometric structure, such as pore walls
in porous media. In biological tissues they are brought by
paramagnetic cells, such as deoxygenated red blood cells
(RBCs) and iron-enriched cells in the brain gray matter.
In some cases the susceptibility contrast can be artifi-
cially manipulated.

Below we consider the NMR signal from a suspension
of arbitrarily shaped weakly paramagnetic objects. We
demonstrate a significant individual object shape depen-
dence of the transverse relaxation rate. We discuss this
result in the biomedical context. Applications of the bio-
medical NMR imaging (MRI) are limited by a spatial
resolution �1 mm, which is larger than the cell size by
2–3 orders of magnitude. Direct resolution enhancement
is unfeasible since today MRI hardware hits physiological
limits. Our results suggest that further progress can be
made by a deeper analysis of the NMR signal since it
contains significant information about the paramagnetic
tissue structure at the scale of several �m.

We compare our results with experiments on whole
blood [4–6], with the objects being paramagnetic
RBCs. Previous theoretical efforts in this context were
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blood vessels [7,9,10]). The effect of object shape was
not studied theoretically although experiments [11,12]
and the Monte Carlo simulation [12] indicate a strong
shape dependence of the transverse relaxation.

We model the medium by a suspension of N � 1
identical mesoscopic paramagnetic objects which are
randomly placed and oriented. The NMR signal is ac-
quired from nuclear spins that freely diffuse in the sol-
vent and in the objects. A macroscopic volume V of the
suspension is characterized by the volume fraction � �
Nv0=V of objects (v0 � single object’s volume). The
case of different object species is easily accounted for
when � � 1, since they contribute additively to the re-
laxation rate [7,9].

Transverse relaxation occurs due to two different
mechanisms: (i) microscopic spin-spin interactions at
the molecular level and (ii) diffusion of spins in the
magnetic field induced by mesoscopic objects. Fast
processes (i) average out to produce a monoexponential
relaxation. Processes (ii) are described in terms of the
transverse magnetization density  �r�, which evolves due
to molecular diffusion and spin precession with the local
Larmor frequency varying in space. It obeys the Bloch-
Torrey equation [13]
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where D is the diffusion coefficient of the molecules that
carry spins and T2 is the relaxation time due to the
microscopic interactions. The relaxation rate 1=T2 is in-
sensitive to magnetic field inhomogeneities at the meso-
scopic scale. Rather, it characterizes local chemical
composition.We assume thatD and T2 are the same inside
the objects and in the solvent. The constant term !L
provides the Larmor precession in the homogeneous
main field, and !�r� �

P
N
n�1!0�r� rn� is the deviation

from !L due to the local magnetic fields induced by
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FIG. 1. Second order processes for f�t�. Left: FID relaxation.
Circles, wavy lines, and crosses stand for �i�!, Y�k�, and
~vv�k� respectively. Solid lines represent free propagators
��0��k; #� in time intervals between interactions. External mo-
menta are set to zero due to Eq. (3). Right: CPMG relaxation.
Each section represents a free propagator ��0� in the interval �t
between successive refocusing pulses. Complex conjugation on
every other interval �t is indicated with the filled circle.
Equation (12) is obtained as a sum of all such configurations.
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The signal S�t� from a macroscopic sample is the sum
of all spin magnetic moments regardless of their initial
positions and their Brownian trajectories after the exci-
tation [9]. In terms of the Green’s function  �r; r0; t� of
(1), defined by the initial condition  �r0; r; t � 0� �
��r� r0�,

S�t� �
1

V

Z
d3rd3r0 �r; r0; t� 	 e�i!Lt�t=T2s�t�: (2)

Microscopic processes decouple due to Eq. (1):  �
e�i!Lt�t=T2�, with ��r; r0; t� accumulating mesoscopic
effects. The corresponding signal attenuation factor

s�t� �
1

V

Z
d3rd3r0��r; r0; t�; s�0� � 1; (3)

describing these effects is the main object of our focus.
Consider the mesoscopic part M�r0; t� �R
d3r��r0; r; t� of the spin packet magnetization. The

d3r0 integration in (3) effectively averages M�r0; t� over
randomly positioned objects. For � � 1,M is a product of
factors contributed by individual objects [9]. In this case
s�t� is expressible in terms of a single object dephasing
effect f�t� [7,9]:

s � e��f; f�t� �
�Z d3r0

v0

�
1�

Z
d3r��r0; r; t�

��
o
:

(4)

Here � is the mesoscopic part of the spin packet magne-
tization density in the presence of a single object,
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��r0; r; t � 0� � ��r� r0�;
(5)

and average h io in (4) is taken over the object’s
orientations.

In the main field B0ẑz each paramagnetic object induces
a local Larmor frequency shift !0�r� that is determined
by the object’s susceptibility profile ��r�. Below we use
uniformly magnetized objects to compare with experi-
ments: ��r� � � � v�r�, �� 1, where v�r� is a shape
function: v � 1 inside and v � 0 outside the object. A
convolution in r, !0 in the Fourier space is

!0�k� � �! � Y�k̂k� � ~vv�k�; �! � 4��!L; (6)

where Y�k̂k� � 1=3� k2z=k2 is the longitudinal projection
of an elementary magnetic dipole field, and the object’s
form factor ~vv�k� is the Fourier transform of v�r�.

Transverse relaxation is qualitatively different in the
limits of strong and weak dephasing. Introduce effective
object radius " as that of a sphere of a volume v0. Water
molecules pass by the object during the diffusion time

tD �
"2

D
; where

4

3
�"3 	 v0 �

Z
d3rv�r�: (7)

The typical phase acquired by the spins is �! � tD. In the
present work we focus on a weak dephasing case
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�! � tD � 1 (diffusion narrowing regime). This regime
covers a variety of experiments, in particular, spin de-
phasing in diamagnetic and paramagnetic samples in the
field B0 & 1 T.

We find the Green’s function � of Eq. (5) perturbatively
in the small parameter �! � tD, and use Eq. (4) to obtain
f�t�. This approach is analogous to the Born series for the
quantum mechanical scattering amplitude.

The zeroth order in �! � tD describes free diffusion. In
this case the total magnetization of each spin packet is
conserved,

R
d3r��r0; r; t� � 1 in (4), and s�t� � 1. The

first order correction to f vanishes since it is proportional
to the angular average of the dipole field. The expression
for f is dominated by the second order in �! � tD (Fig. 1):
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�! � tD: (9)

Here # is the dimensionless time # � t=tD. The inner
integral in Eq. (8), which is taken over the directions of
q � k", depends exclusively on the object shape. The
object size enters Eq. (8) only through the diffusion
time tD, Eq. (7). The function g depends on the particular
sequence of the radiofrequency (rf) pulses applied to
manipulate the spins and is discussed later.

As a conservative estimate, the formal series for f�t�
converges when $< 1. Odd orders of the expansion in $
are imaginary. They renormalize the homogeneous com-
ponent of the suspension’s magnetic susceptibility. Since
the first order vanishes the correction to !L is propor-
tional to $3. The signal attenuation is determined by the
even orders in$. The correction to (8) is of the order of$4

and is negative.
Consider the free induction decay (FID), an evolution

after a single rf �=2 pulse which creates the maximal
transverse spin magnetization. The function g in (8),
denoted as gFID, is proportional to a time convolution of
the three free diffusion propagators ��0��q; #� �
(�#�e�q

2#, (�#� being a unit step function (Fig. 1, left):

gFID�q2#� � q2#� 1� e�q
2#: (10)
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FIG. 2. Mesoscopic relaxivity r2 � f�#�=# for $2 � 15=2�.
Left: objects are spheres, t � tE for the SE, t � �t for
the CPMG. Right: shape effect: disks vs spheres. CPMG
relaxivity r2��t=tD � 1�, objects are disks with height-
to-radius ratio c, and spheres of the same volume.
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To reduce sensitivity to large scale field inhomogene-
ities, samples are often irradiated by a number of refo-
cusing rf � pulses. Each such pulse quickly rotates the
spins by� around an axis which is transverse to ẑz. This is
equivalent to a complex conjugation of � developed up
until this time moment. The resulting distribution �� is
the initial condition for the further evolution.

In the spin echo (SE) technique [14] a single � pulse
is applied at the time tE=2 and the signal is measured at
t � tE. The corresponding g function reads

gSE � q2#E � 3� 4e�q
2#E=2 � e�q

2#E ; #E �
tE
tD
:

(11)

In the CPMG (Carr-Purcell-Meiboom-Gill) protocol [15]
refocusing � pulses are generated in a long train and the
steady state signal is studied as a function of the inter-
pulse interval �t (Fig. 1, right):

gCPMG � q2#� 2 tanh
q2#
2
; # �

�t
tD
: (12)

Equations (10)–(12) yield that at #� 1, f / #2 for the
FID and f / #3 for the SE and the CPMG sequences.
Asymptotic expansion of (8) in #�1=2 at #� 1 gives
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sequences. The dimensionless NMR relaxivity r2 is
shown in Fig. 2, left, for the case of the homogeneously
magnetized spherical particles. Shape dependence is
illustrated in Fig. 2, right, for the case of disk-shaped
objects. The height-to-radius ratio c defines the disk
shape, with c � 0:5 being close to the intact RBC.

Below we analyze our results, Eqs. (8) and (13).
(i) Relaxation (4) crucially depends on the shape of the

object.—It is the form factor ~vv�k� that governs the con-
vergence of the integral for large q � k" in (8). The
integral converges at k� 1=", allowing one to probe the
object’s structure. (A quantum mechanical analogy is
scattering amplitude dependence on the form factor of
the external potential.) A pointlike magnetization v /
��r� causes a divergence in Eqs. (8) and (13). In the
present case this ‘‘nonrenormalizability’’ (nonuniversal
cutoff dependence) effectively increases sensitivity in the
NMR measurements.

(ii) Shape sensitivity is a consequence of a singular
interaction Y � r�- between nuclear spins and objects.
Consider the case when the singularity in Y is cut off at a
scale r < a. Then Y�k� ! 0 as ka > 1. If a > ", the
integral in Eq. (8) is insensitive to the form factor since
it converges at k < 1=a < 1=", destroying shape sensitiv-
ity. Physically, such a cutoff introduces a spherical
‘‘cloud’’ of a radius a around each object. This cloud
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smears information about the object’s structure.
The power necessary for shape dependence is - > 2�
�d� 2�=N for the Nth order in d dimensions. Thus both
magnetic dipole (- � 3) and contact interaction Y � ��r�
in d � 3 yield shape sensitivity already in the second
order, as shown above.

(iii) Shape sensitivity is present for any field B0.—
Above we demonstrated shape sensitivity in the domain
where the perturbative approach is reliable ($� 1). We
now prove it for any $. Integrals such as (8) whose
convergence is form factor dependent appear in each order
of the perturbation series for f�t�. Although angular
integrations impede explicit summation of this series,
they do not cause nonanalyticity at $ � 0, and thus radius
of convergence in$ / B0 is finite. Therefore the series can
be analytically continued to the large field domain $ > 1
where the perturbation theory formally breaks up. The
final result for f�t� would still be form factor dependent,
which proves shape sensitivity for any field.

(iv) Shape sensitivity is a generic effect.—Consider
a diffusion limited chemical reaction on impurities
with a shape u�r�. The FID signal analytically continued
by � i!�r� ! u�r� gives the impurity shape dependent
reaction rate.

Below we compare the results (8) and (13) with experi-
ments. As a first test we use the reported relaxation
rate in dilute (� � 0:02) suspensions of polystyrene
microspheres in paramagnetically doped water [16]
(Fig. 3, left).

Further experiments were performed on the deoxygen-
ated blood with a high RBC volume fraction � �
0:40–0:60 [4–6]. To apply Eqs. (8) and (13) one needs to
take into account a slower diffusion inside the cells and to
extend our approach for large � . The former will be
considered elsewhere. For now, we obtain upper and lower
estimates for the relaxation rate by using in Eq. (8) the
values Din, Dout of the diffusion coefficient in erythro-
cytes and plasma, respectively.

The � � 1 case poses a challenging task equivalent to
finding the statistical sum of a dense gas of objects.
Instead we replace � by ��1� �� in (4), which is well
supported experimentally [17]. Such a replacement is
justified by the virial expansion. Equation (4) treats
278101-3
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FIG. 3. Theory (lines) vs experiments (symbols). Left: re-
laxation rate R2 � ��lns�=t for the FID (boxes) and SE
(circles) as a function of the particle diameter. Filled and
hollow symbols correspond to measured and Monte Carlo
simulated relaxation rates [16]. Right: CPMG relaxation
rate for the human blood samples [6] for B0 �
1:41; 1:18; 0:94; 0:71 T (from top to bottom). Experimental
errors are 10%–20% [6]. Following our discussion after
Eq. (8), theory agrees with experiment for small $ and over-
estimates it for $ ’ 1.
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exactly the first cumulant of the statistical sum. The
second cumulant provides an O��2� negative correction.
This together with a vanishing mesoscopic contribution
as � ! 1 justifies a quadratic polynomial interpolation,
��1� ��. The latter is correct as � ! 0 and 1 and de-
scribes a crossover between the dilute and the extremely
dense cases.

The relaxation rate in deoxygenated blood measured
in [4] quadratically depends on the magnetic field,
��lns�=t � 21B

2
0, in agreement with Eq. (8). The propor-

tionality coefficient 21 was found to be 7:2 s�1 T�2 for the
CPMG pulse sequence with �t � 4 ms. In [4], the field
range B0 � 0:05–1:5 T yields $ � 0:033–0:99. We calcu-
lated � � 0:55 from the parameters given in [4], utilized
the magnetic susceptibility of the deoxygenated RBCs
� � 2:7� 10�7 [5], and simulated the intact erythro-
cytes by disks of the known volume of 87 �m3 with the
height-to-radius ratio of c � 0:5. Using Dout �
2:20 �m2=ms and Din � 0:76 �m2=ms [18], our theory
gives 4:7< 21th < 5:6 s�1 T�2.

To assess this result we note that neither the suscepti-
bility of RBCs nor their actual shape was reported in [4].
Chemicals used to treat the samples are likely to change
osmotic pressure in plasma, which would deform the
RBCs thus changing all relevant parameters.

Quadratic dependence of the SE blood relaxation rate
on �, which follows from Eq. (8), was confirmed by
varying the RBC oxygen saturation y in the field B0 �
1:5 T [5]: ��lns�=t � 22�0:95� y�2, with the measured
coefficient 22 � 55 s�1 for � � 0:3 and 22 � 59 s�1 for
� � 0:4. Our approach results in the corresponding
ranges 26< 22th < 56 s�1 and 30< 22th < 64 s�1.

The CPMG relaxation rate R2 � ��lns�=t in the whole
blood was measured [6] as a function of the interecho
interval (Fig. 3, right) for 0:71<B0 < 1:41 T. We simu-
lated blood as described above using D � Dout for
plasma. The use of the value Din instead of Dout yields
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about the same rate R2 for the short times and approxi-
mately a twofold increase of R2 for the large times.

This brief survey shows that, although crude, our
model captures the essential features of the NMR relaxa-
tion. Experiments at higher fields [11,12] confirm the
shape dependence for $ > 1. Their results can be well
described by adjusting tD and $ [8] or by fitting to a
simple chemical exchange model [19]. However, fitting
has a predictive power when the signal universally de-
pends on a handful of phenomenological parameters.
Shape sensitivity makes such a fitting meaningless in
the case of varying tissue structure. Because of the
same reason, in experiments analogous to [4–6,11,12] it
is essential to control volume fraction, shape, and suscep-
tibility of paramagnetic objects, and effective diffusion
coefficient in the sample.

To conclude, we showed that transverse relaxation
from a suspension of paramagnetic objects is extremely
sensitive to the shape of the individual object. This sensi-
tivity to geometic structure is a generic effect that can be
employed as a novel type of contrast in NMR measure-
ments thus effectively increasing spatial resolution.
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