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Phase Transitions in Quantum Pattern Recognition
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With the help of quantum mechanics one can formulate a model of associative memory with optimal
storage capacity. This model is generalized by introducing a parameter playing the role of an effective
temperature. The corresponding thermodynamics provides criteria to tune the efficiency of quantum
pattern recognition. It is shown that the associative memory undergoes a phase transition from a
disordered, high-temperature phase with no correlation between input and output to an ordered, low-
temperature phase with minimal input-output Hamming distance.
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identification efficiency cannot be tuned; only the recog-
nition efficiency can be influenced.

tially all operations for each of them before measuring the
control register. The full initial quantum state is thus
The power of quantum computation [1] is mostly asso-
ciated with the speedup in computing time it can provide
with respect to its classical counterpart. Recently, how-
ever, I showed [2] that this new paradigm of information
processing opens the possibility for another improvement
upon classical computation, represented by associative
memories with exponential, and thus optimal, storage
capacity. Subsequent further studies [3] are turning quan-
tum pattern recognition into a completely new applica-
tion of quantum information theory.

In traditional computers the storage of information is
address oriented. Retrieval of information requires a pre-
cise knowledge of the memory address and, therefore,
incomplete or noisy inputs are not permitted. In order
to address this shortcoming, models of associative (or
content-addressable) memories [4] were introduced. Here,
recall of information is possible on the basis of partial
knowledge of their content, without knowing the storage
location. The best known examples are the Hopfield
model and its generalizations [5].

While these models solve the problem of recalling
incomplete or noisy inputs, they suffer from a severe
capacity shortage. Because of the phenomenon of cross-
talk, which is essentially a manifestation of the spin glass
transition [6] in the corresponding spin system, the maxi-
mum number of binary patterns that can be stored in a
Hopfield network of n neurons is linear in the number of
neurons, pmax � O�n� [4].

The probabilistic associative quantum memory pro-
posed in [2] solves both problems. It is content address-
able and can thus recognize corrupted or incomplete
inputs and it can store 2n binary patterns on n qbits.
Contrary to its classical counterpart, which matches
any input onto a stored pattern, the quantum associative
memory is characterized by both a recognition process
and an identification process. An input pattern can be
rejected as nonrecognized even before an identification
is attempted. For its simplest version, described in [2], the
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In this Letter I propose a generalization of my previous
model with a new parameter t playing the role of an
effective temperature, which can be tuned by adding a
number b � �1=t�integer of certain control qbits. A proper
thermodynamics corresponding to this parameter t can
be defined. In particular, the free energyF�t� describes the
average behavior of the recognition mechanism at tem-
perature t and provides criteria to tune the efficiency of
the associative memory. I show that, by increasing b
(lowering t), the associative memory undergoes a phase
transition from a disordered phase with no correlation
between input and output to an ordered phase with mini-
mal Hamming distance between the input and the output.
This extends to quantum information theory the relation
with Ising spin systems known in error-correcting codes
and in public key cryptography [7].

The memory model proposed in [2] consists of three
registers: one for the input, one for the memory jmi
proper, and one for a control qbit jci. The memory jmi
consists of a coherent superposition of the p binary
patterns jpii on n entangled qbits:

jmi �
1����
p

p
Xp
k�1

jpki: (1)

I do not discuss here the algorithm for generating this
superposition starting from the p individual patterns,
since it is described in detail in [2]. Also, the usual
error-correcting infrastructure [1] is assumed in order
to protect the memory from decoherence.

The information retrieval algorithm entails repeating
a set of operations and measurements of the control qbit
jci until this is found in state j0i or a threshold T of
repetitions is reached. When jci � j0i is measured one
can proceed to a measurement of the memory register
that yields the output; if T is reached before obtaining
jci � j0i the input is classified as ‘‘nonrecognized.’’

I propose here to generalize this device by increasing
to b the number of control qbits and repeating sequen-
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j 0i �
1����
p

p
Xp
k�1

ji;pk; 01; . . . ; 0bi; (2)

where jii � ji1; . . . ; ini denotes the input qbits, the second
register, m, contains the memory (1) and all b control
qbits are in state j0i. Applying the Hadamard gate [1]
H � ��1 	 �3�=

���
2

p
(�i being the Pauli matrices) to the

first control qbit, one obtains

j 1i �
1������
2p

p
Xp
k�1

ji;pk; 01; . . . ; 0bi

	
1������
2p

p
Xp
k�1

ji;pk; 11; . . . ; 0bi: (3)

I now apply to this state the following combination of
quantum gates:

j 2i �
Yn
j�1

NOTmj
XORijmj

j 1i; (4)

where the single-qbit gate NOT is represented by the first
Pauli matrix �1, while the two-qbit exclusive OR (XOR)
has the matrix representation XOR � diag�1; �1� and per-
forms thus a NOT on the second qbit if and only if the first
one is in state j1i. Subscripts indicate the qbits on which
these gates are applied, m denoting the memory register.

As a result of the above operation the memory register
qbits are in state j1i if ij and pkj are identical and j0i
otherwise:

j 2i �
1������
2p

p
Xp
k�1

ji; dk; 01; . . . ; 0bi

	
1������
2p

p
Xp
k�1

ji; dk; 11; . . . ; 0bi; (5)

where dkj � 1 if and only if ij � pkj and dkj � 0 otherwise.
Consider now the following Hamiltonian:

H � �dH�m 
 ��3�c1 ; �dH�m �
Xn
j�1

�
�3 	 1
2

�
mj

;

(6)

where �3 is the third Pauli matrix. H measures the
number of 0’s in register m, with a plus sign if c1 is in
state j0i and a minus sign if c1 is in state j1i. Given how I
have prepared the state j 2i, this is nothing else than the
number of qbits which are different in the input and
memory registers i and m. This quantity is called the
Hamming distance and represents the (squared)
Euclidean distance between two binary patterns.

Every term in the superposition (5) is an eigenstate of
H with a different eigenvalue. Applying thus the unitary
operator exp�i�H =2n� to j 2i one obtains
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j 3i �e
i��=2n�H j 2i;

j 3i �
1������
2p

p
Xp
k�1

ei��=2n�dH�i;p
k�ji; dk; 01; . . . ; 0bi

	
1������
2p

p
Xp
k�1

e�i��=2n�dH�i;p
k�ji; dk; 11; . . . ; 0bi;

(7)

where dH�i; pk� denotes the Hamming distance between
the input i and the stored pattern pk.

In the final step I restore the memory gate to the state
jmi by applying the inverse transformation to Eq. (4) and I
apply the Hadamard gate to the control qbit c1, thereby
obtaining

j 4i � Hc1

Y1
j�n

XORijmj
NOTmj

j 3i;

j 4i �
1����
p

p
Xp
k�1

cos
�
2n
dH�i; p

k�ji;pk; 01; . . . ; 0bi

	
1����
p

p
Xp
k�1

sin
�
2n
dH�i; pk�ji;pk; 11; . . . ; 0bi:

(8)

The idea is now to repeat the above operations sequen-
tially for all b control qbits c1 to cb. This gives

j fini �
1����
p

p
Xp
k�1

Xb
l�0

cosb�l
�
�
2n
dH�i; pk�

�

� sinl
�
�
2n
dH�i; pk�

�X
fJlg

ji;pk; Jli; (9)

where fJlg denotes the set of all binary numbers of b bits
with exactly l bits 1 and �b� l� bits 0. This concludes the
deterministic part of the information retrieval process.

At this point one needs a measurement of the control
register. Note that the overall effect obtained by the
deterministic operations is an overall amplitude concen-
tration on memory states similar to the input if there is a
large number of j0i control qbits and an amplitude con-
centration on states different to the input if there is a large
number of j1i control qbits. One is thus interested in
retaining the projected state after the measurement only
if all control qbits are measured in state j0i. This will
generically entail repeating the deterministic part of the
algorithm several times, until exactly the desired state
for the control register is obtained. If the number of such
repetitions exceeds a preset threshold T the input is clas-
sified as nonrecognized and the algorithm is stopped.
Otherwise, once jc1; . . . ; cbi � j01; . . . ; 0bi is obtained,
one proceeds to a measurement of the memory regis-
ter m, which yields the output pattern of the memory.

Since the expected number of repetitions needed to
measure the desired control register state is 1=Precb , with

Precb �
1

p

Xp
k�1

cos2b
�
�
2n
dH�i;p

k�

�
; (10)
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the probability of measuring jc1; . . . ; cni � j01; . . . ; 0ni,
the threshold T governs the recognition efficiency of the
input patterns.

Once the input pattern i is recognized, the measure-
ment of the memory register yields the stored pattern pk

with probability

Pb�p
k� �

1

Z
cos2b

�
�
2n
dH�i; p

k�

�
; (11)

Z � pPrecb �
Xp
k�1

cos2b
�
�
2n
dH�i; pk�

�
: (12)

Clearly, this probability is peaked around those patterns
which have the smallest Hamming distance to the input.
The highest probability of retrieval is thus realized for
that pattern which is most similar to the input.

Contrary to the simplest version of this model pre-
sented in [2], however, here there is a second tunable pa-
rameter, namely, the number b of control qbits. This new
parameter b controls the identification efficiency of the
quantum memory since, increasing b, the probability dis-
tribution Pb�pk� becomes more and more peaked on the
low dH�i; pk� states, until limb!1 Pb�pk� � �kkmin , where
kmin is the index of the pattern (assumed unique for conve-
nience) with the smallest Hamming distance to the input.

The role of the parameter b becomes familiar upon a
closer examination of Eq. (11). Indeed, the quantum dis-
tribution described by this equation is equivalent to a
canonical Boltzmann distribution with (dimensionless)
temperature t � 1=b and (dimensionless) energy levels

Ek � �2 log cos

�
�
2n
dH�i; pk�

�
; (13)

with Z playing the role of the partition function.
The appearance of an effective thermal distribution

suggests studying the average behavior of quantum asso-
ciative memories via the corresponding thermodynamic
potentials. Before this can be done, however, one must
deal with the different distributions of stored patterns
characterizing each individual memory. To this end I
propose to average also over this distribution, by keeping
as a tunable parameter only the minimal Hamming dis-
tance d between the input and the stored patterns. In
doing so, one obtains an average description of the aver-
age memory.

As a first step it is useful to normalize the pattern
representation by adding (modulo 2) to all patterns, input
included, the input pattern i. This clearly preserves all
Hamming distances and has the effect of normalizing the
input to be the state with all qbits in state j0i. The
Hamming distance dH�i; pk� becomes thus simply the
number of qbits in pattern pk with value j1i. For loading
factors p=n! 0 in the limit n! 1, the partition func-
tion for the average memory takes then a particularly
simple form:
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Zav �
p
N�

X
f�g

Xn
j�d

�j cos
2b

�
�
2

j
n

�
; (14)

where �j describes an unconstrained probability distribu-
tion such that

P
n
j�d �j � 1, f�g is the set of such distribu-

tions, and N� is the corresponding normalization factor.
I now introduce the free energy F�b; d� by the usual

definition

Zav � pe�bF�b;d� � Zav�b � 0�e�bF�b;d�; (15)

where I have chosen a normalization such that exp��bF�
describes the deviation of the partition function from its
value for b � 0 (high effective temperature). Since Z=p,
and consequently also Zav=p, possess a finite, nonvanish-
ing large-n limit, this normalization ensures that F�b; d�
is intensive, exactly like the energy levels (13), and scales
as a constant for large n. This is the only difference with
respect to the familiar situation in statistical mechanics.

The free energy describes the equilibrium of the sys-
tem at effective temperature t � 1=b and has the usual
expression in terms of the internal energy U and the
entropy S:

F�t; d� � U�t; d� � tS�t; d�; U�t; d� � hEit;

S�t; d� �
�@F�t; d�

@t
:

(16)

Note that, with the normalization I have chosen in (15),
the entropy S is always a negative quantity describing the
deviation from its maximal value Smax � 0 at t � 1.

By inverting Eq. (13) with F substituting E one can
also define an effective (relative) input/output Hamming
distance D at temperature t:

D�t; d� �
2

�
arccose�F�t;d�=2: (17)

This corresponds exactly to representing the recognition
probability of the average memory as

�Precb �av � cos
2b

�
�
2
D�b; d�

�
; (18)

which can also be taken as the primary definition of the
effective Hamming distance.

The function D�b; d� provides a complete description
of the behavior of quantum associative memories in the
limit p=n� 1, which can be used to tune their perform-
ance. Indeed, suppose that one wants the memory to
recognize and identify inputs with up to !n corrupted
inputs with an efficiency of " �0 � " � 1�. Then one must
choose a number b of control qbits sufficiently large that
�D�b; !n� � !� � �1� "� and a threshold T of repetitions
satisfying T � 1= cos2b��2D�b; !n��, as illustrated in
Fig. 1 below.

A first hint about the general behavior of the effective
distance function D�b; d� can be obtained by examining
closer the energy eigenvalues (13). For small Hamming
distance to the input these reduce to
277903-3
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FIG. 1. Effective input/output distance and entropy (rescaled
to [0,1]) for 1 Mb patterns and d=n � 1%.
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Ek ’
�2

4

�
dH�i; pk�

n

�
2
;

dH�i; pk�
n

� 1: (19)

Choosing again the normalization in which jii � j0 . . . 0i
and introducing a ‘‘spin’’ ski with value ski � �1=2 if
qbit i in pattern pk has value j0i and ski � 	1=2 if
qbit i in pattern pk has value j1i, one can express the
energy levels for dH=n� 1 as

Ek �
�2

16
	
�2

4n2
X
i;j

ski s
k
j 	

�2

4n

X
i

ski : (20)

Apart from a constant, this is the Hamiltonian of an
infinite-range antiferromagnetic Ising model in the pres-
ence of a magnetic field. The antiferromagnetic term
favors configurations k with half the spins up and half
down, so that sktot �

P
i s
k
i � 0, giving Ek � �2=16. The

magnetic field, however, tends to align the spins so that
sktot � �n=2, giving Ek � 0. Since this is lower than
�2=16, the ground state configuration is ferromagnetic,
with all qbits having value j0i. At very low temperature
(high b), where the energy term dominates the free en-
ergy, one expects thus an ordered phase of the quantum
associative memory with D�t; d� � d=n. This corre-
sponds to a perfect identification of the presented input.
As the temperature is raised (b decreased), however, the
thermal energy embodied by the entropy term in the free
energy begins to counteract the magnetic field. At very
high temperatures (low b) the entropy approaches its
maximal value S�t � 1� � 0 (with the normalization
chosen here). If this value is approached faster than 1=t,
the free energy will again be dominated by the internal
energy. In this case, however, this is not anymore deter-
mined by the ground state but rather equally distributed
on all possible states, giving

F�t � 1� � U�t � 1�

�
�1

1� �d=n�

Z 1

d=n
dx 2 log cos

�
�
2
x
�

�

�
1	

d
n

�
2 log2	O

��
d
n

�
2
	
; (21)

and leading to an effective distance

D�t � 1; d� �
2

3
�
2 log2

�
���
3

p
d
n
	O

��
d
n

�
2
	
: (22)

This value corresponds to a disordered phase with no
correlation between input and output of the memory.

A numerical study of the thermodynamic potentials in
(16) and (17) indeed confirms a phase transition from the
ordered to the disordered phase as the effective tempera-
ture is raised. In Fig. 1 I show the effective distance D
and the entropy S for 1 Mb (n � 8� 106) patterns and
d=n � 1% as a function of the inverse temperature b (the
entropy is rescaled to the interval [0,1] for ease of pre-
sentation). At high temperature there is indeed a disor-
dered phase with S � Smax � 0 and D � 2=3. At low
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temperatures, instead, one is in the ordered phase with
S � Smin and D � d=n � 0:01. The effective Hamming
distance plays thus the role of the order parameter for the
phase transition.

The phase transition occurs at bcr ’ 10�1. The physi-
cal regime of the quantum associative memory (b �
positive integer) begins thus just above this transition.
For a good accuracy of pattern recognition one should
choose a temperature low enough to be well into the
ordered phase. As is clear from Fig. 1, this can be
achieved already with a number of control qbits b �
O�104�. Note that this number becomes independent of
the dimension n of the patterns for large n. The computa-
tional load of quantum pattern recognition is thus deter-
mined uniquely by the accuracy requirements.
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