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Creation of Entanglement by Interaction with a Common Heat Bath
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I show that entanglement between two qubits can be generated if the two qubits interact with a
common heat bath in thermal equilibrium, but do not interact directly with each other. In most
situations the entanglement is created for a very short time after the interaction with the heat bath is
switched on, but depending on system, coupling, and heat bath, the entanglement may persist for
arbitrarily long times. This mechanism sheds new light on the creation of entanglement. A particular
example of two quantum dots in a closed cavity is discussed, where the heat bath is given by the
blackbody radiation.

DOI: 10.1103/PhysRevLett.89.277901 PACS numbers: 03.65.Ud, 03.67.-a, 05.70.-a
quantum entanglement. Indeed, we will see that the en-
tanglement created may die again on a decoherence time
scale of the system. However, notable exceptions exist:

states j0i and j1i are energy eigenstates with degenerate
energies, for both qubits. In this case, HAB � 0 up to an
irrelevant constant. For situations where the degeneracy is
Since the discovery of quantum mechanics,‘‘entangle-
ment’’ has been considered a hallmark of quantum be-
havior [1]. Two quantum systems A and B in a pure state
are called entangled, if their quantum mechanical state
vector j i cannot be written as the product of two states
j�Ai and j�Bi in the Hilbert spaces of A and B, respec-
tively. The last few years of research on quantum
information processing have lead to the picture of entan-
glement as a precious resource. Entanglement plays an
important role in superdense coding [2] and quantum
teleportation [3], and is necessary for the exponential
speedup of quantum algorithms compared to classical
algorithms [4].

Recently investigated examples of the controlled crea-
tion of entanglement include trapped ions that interact
electrostatically (or more precisely exchange phonons in a
chain of ions [5]), and the entanglement of atoms in a
cavity by the interaction with a specific electromagnetic
mode of the cavity [6,7]. In the latter example entangle-
ment can be created even in the case where the cavity
mode is itself coupled to many more degrees of freedom
of the electromagnetic environment, i.e., if the cavity is
more or less leaky. Nevertheless, in all these examples a
third system with one or few degrees of freedom is clearly
singled out by mediating the interaction between the
atoms or ions. This is true even for strongly leaking
cavities capable of supporting superradiance [8], which
may still entangle atoms [9].

In the following, I show that entanglement can be
created if the two systems interact neither directly, nor
with a third system with only one or a few singled out
degrees of freedom, but interact with the (possibly infi-
nitely many) degrees of freedom of a heat bath in thermal
equilibrium. This is a priori not obvious since interac-
tions with a heat bath lead typically to very rapid deco-
herence [10], thus to classical states and the destruction of
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(i) if the two systems are coupled in a symmetric way to
the environment the entanglement will be protected
[11]—much in the spirit of what is known from coherent
rotational tunneling [12], long-living Schrödinger cat
states [13], and decoherence free subspaces [7,14,15].
(ii) Many environments will lead, for systems with de-
generate energy levels and in sufficiently high dimension,
to incomplete decoherence, a surprising effect to be dis-
cussed below.

When dealing with a ‘‘heat bath,’’ i.e., another system
with very many degrees of freedom over which we do not
have microscopic control, the definition of entanglement
has to be generalized to mixed states. A state of a bipar-
tite system is said to be ‘‘separable’’ iff the density matrix
of the state can be written as

� �
XN
i�1

pi�Ai � �
B
i ; (1)

where the pi are probabilities (0 � pi � 1), �Ai and �Bi are
density matrices for the two subsystems A and B, and N
is an arbitrary integer. A state that is not separable is said
to be entangled [16]. A simple criterion for entanglement
of bipartite systems of dimensions 2� 2 or 2� 3 was
proven by the Horodecki family [17]: A state � of a 2� 2
or 2� 3 bipartite system is separable iff � has a non-
negative partial transpose �TA . The partial transpose �TA
is obtained by transposing in a matrix representation of �
only the indices corresponding to subsystem A, i.e.,
�TAik;jl � �jk;il with �jk;il � hjj � hkj�jii � jli.

Suppose Alice and Bob both own a qubit with basis
states j0i and j1i over which they have local control. The
qubits do not interact with each other. Thus, the
Hamiltonian representing the two qubits is simplyHAB �
HA �HB, where HA acts only on Alice’s Hilbert space,
and HB only on Bob’s. Suppose further that the qubit
2002 The American Physical Society 277901-1
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FIG. 1 (color online). Smallest eigenvalue of �TA as a function
of f and ’.
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not exact, let us assume at least that the inverse level
spacing is much larger than any time scale that we are
interested in. The dynamics induced by a finite HA or HB
can then be neglected and we can drop the ‘‘system
Hamiltonian’’ HAB [18]. The heat bath will be described
as a collection of N harmonic oscillators,

Hbath �
XN
i�1

�
1

2m
p2
i �

1

2
m!2

i q
2
i

�
: (2)

For the interaction with the heat bath we assume a
coupling Hamiltonian

Hint � 	SA � SB
B ; B �
X
k

gkqk; (3)

where SA and SB are ‘‘coupling agents’’ acting on the
Hilbert spaces of Alice and Bob, respectively, and the
gk are coupling constants to the kth oscillator. An ex-
ample that is described by (3) will be analyzed in detail
below.

Let us further assume that the qubit basis states j0i and
j1i are eigenstates of SA and SB with eigenvalues a0, a1,
and b0, b1, respectively. The combined computational
basis states j00i, j01i, j10i, and j11i are then eigenvectors
of SA � SB with corresponding eigenvalues a0 � b0,
a0 � b1, a1 � b0, and a1 � b1, respectively.

Protecting their qubits momentarily from the environ-
ment, Alice and Bob prepare pure initial states j’Ai and
j’Bi of their respective qubits. The heat bath is assumed
to be initially in thermal equilibrium at temperature T,
and so the total initial state is the density matrix

W	0
 � j’Aih’Aj � j’Bih’Bj �
1

Z
e�Hbath=kBT; (4)

where Z � trbathe�Hbath=kBT and kB denotes Boltzmann’s
constant. The time evolution of Alice’s and Bob’s qubits
alone is described by the reduced density matrix �	t
 �
trbathW	t
. That time dependence was calculated for an
arbitrary system with negligible system Hamiltonian and
coupled as in (3) to a heat bath of harmonic oscillators in
[18]. The result can be phrased in terms of two functions
f	t
 and ’	t
,

f	t
 �
X
k

g2k	1� 2nk


2m �h!3
k

	1� cos!kt


� Re
1

�h2

Z t

0
ds sC	t� s
; (5)

’	t
 �
X
k

g2k
2m �h!2

k

�
t�

sin!kt
!k

�
� Im

1

�h2

Z t

0
ds sC	t� s
;

(6)

where nk denotes the thermal occupation of the kth mode
and C	t
 � hB	t
B	0
i represents the thermal bath corre-
lation function. In the basis of eigenstates of SA � SB (the
‘‘pointer basis’’ [10]), the time evolution of �ij;kl	t
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(i; j; k; l � 0; 1) is given by

�ij;kl	t
 � �ij;kl	0
 expf�	ai � bj � ak � bl
2f	t


� i
	ai � bj

2 � 	ak � bl


2�’	t
g:

(7)

In general this time evolution leads to a rapid decay of the
off-diagonal matrix elements—unless SA � SB has de-
generate eigenvalues.

Suppose Alice and Bob prepare the initial states
j�Ai � 	j0i � j1i
=

���
2

p
and j�Bi � 	j0i � j1i
=

���
2

p
, i.e.,

�	0
 �
1

4

1 1 �1 �1
1 1 �1 �1
�1 �1 1 1
�1 �1 1 1

0
BB@

1
CCA (8)

and assume for the moment the symmetric coupling
situation a0 � b0 � 0, and a1 � b1 � 1, absorbing even-
tual prefactors into the coupling constants gk. It is
straightforward to compute numerically the eigenvalues
of the partially transposed density matrix �TA for given
f	t
 and ’	t
. Note that these functions vanish at t � 0
and are strictly positive for times t > 0; for small t
(!kt� 1) always both f	t
 and g	t
 become finite, with
f	t
 / ’	t
2=3. By parametrizing the eigenvalues directly
by f	t
 and ’	t
 one can examine all possible (harmonic)
heat baths at the same time. A given heat bath leads to a
certain path in the f; ’ plane. Figure 1 shows the smallest
eigenvalue $0 of �TA as function of f	t
; ’	t
. The eigen-
value is zero for t � 0, where both f and ’ vanish: since
the two qubits were prepared in a product state, the
partial transpose is the same as the original matrix, and
the Schmidt decomposition gives one eigenvalue unity
and three equal zero. As soon as f	t
 and ’	t
 aquire a
finite value, $0 becomes negative, however, meaning that
the two qubits get entangled. For larger values of f and ’,
the absolute value of $0 decays again, and asymptotically,
for f	t
 ! 1, the state
277901-2
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�1 �
1

4

1 0 0 0
0 1 �1 0
0 �1 1 0
0 0 0 1

0
BB@

1
CCA (9)

is reached, independent of the behavior of the imaginary
part. Alice’s partial transpose �TA1 of this matrix has
eigenvalues 1/2, 1/4 (doubly degenerate), and zero, so
that for f	t
 ! 1 no entanglement is left. Using second
order perturbation theory in the deviation of �	t
TA from
�TA1 one easily shows, however, that for all arbitrarily
large but finite f	t
 the two qubits stay entangled.

Finite entanglement is created at short times also in
the case that a0 � b1 and a1 � b0 are not degenerate.
Numerical investigation shows that for a given f	t
 and
’	t
 the positivity of �TA may be even more strongly
violated for nonperfect degeneracy. Nonperfect degener-
acy changes things drastically, however, for large f	t

when for all finite deviations from degeneracy the
nonentangled state �1 � 1

4 diag	1; 1; 1; 1
 is reached.
Therefore there will be a finite time after which the initial
state becomes separable —if f	t
 reaches large values.

It is easy to show numerically that the choice of the
initial state is not crucial. As long as both states contain
components of both j0i and j1i, the heat bath creates
entanglement between the two qubits. And I have also
checked that the interaction with a common heat bath can
create entanglement between a qubit and a qutrit (i.e., a
2� 3 bipartite system).

Let me finally propose a concrete system where the
effect might in principle be observable. Consider two
double-well quantum dots enclosed in an ideally conduct-
ing, box-shaped cavity, with edge dimensions a, b, and c
in x, y, and z directions, respectively. The two quantum
dots are assumed identical, with the two-dimensional
electron gas in the y � b=2 plane, and with two identical
wells to the right and left (in z direction) each, which
might be electrostatically defined by suitable gate-
electrodes. The symmetry centers of the double-well
quantum dots are located at xA � 	a=4; b=2; c=2
 and
xB � 	3a=4; b=2; c=2
 for dot A and B, respectively. The
centers of the wells are separated by a distance d and we
will assume that there exist in both dots two states j0i and
j1i, localized in the right and left well, such that they are
eigenstates of the dipole operators, i.e., erA, h0jrAj0i �
�d=2	0; 0; 1
 � �h1jrAj1i, h0jrAj1i � 0 for dot A, where
e is the electron charge and rA � x� xA is the position of
an electron with respect to the center of the dot. This can
be achieved to very good approximation by a very high
barrier between the two wells, which leads to exponen-
tially small overlap of the two wave functions, and neg-
ligible tunneling splitting. For dot B the two states are
chosen in the opposite way, h0jrBj0i � d=2	0; 0; 1
 �
�h1jrBj1i. The cavity supports TE and TM modes
(‘‘transversal’’ relative to the arbitrarily chosen z direc-
tion as propagation direction). For the above geometry the
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two dots interact only with the TM modes, if we describe
the interaction between the dots and the electromagnetic
field in dipole approximation. This is suitable for tem-
peratures where only modes with wave lengths much
larger than d are populated, i.e., kBT � 2) �hc0=d (c0 is
the speed of light). The interaction in dipole approxima-
tion reads

HA;B
int � �

X1
i;j�0

PA;Bi;j jiihjj
X
k

Ek	xA;B
q̂qk ; (10)

where PA;Bi;j � ehijrA;Bjji are the dipole matrix elements
defined above, Ek �

�������������������
	m=2+0


p
	’x;’y; ’z
 (with ,0 and

+0 electric permeability and magnetic susceptibility of
vacuum, in SI units), and q̂qk is the electric field amplitude
of mode k with the dimension of a length, chosen as
coordinate of the harmonic oscillator in the quantization
of the field [19]. The mass m introduced formally for this
purpose will cancel out again in the final expressions for
f	t
 and ’	t
. The functions ’x, ’y, and ’z define the
spatial structure of the modes. Here, only ’z is needed,
which for perfectly conducting walls is given by [20]

’z	x
 � �
2

���
2

p

����
V

p
k?
,0

sin	kxx
 sin	kyy
 cos	kzz
; (11)

V � abc denotes the total volume, k? �
����������������
k2x � k2y

q
are

the transverse wave numbers, and the wave vector is given
by 	kx; ky; kz
 � )	m=a; n=b; p=c
, m; n; p � 0; 1; 2; . . . .
Thus,

HA;B
int � �.A;Bx

X
k

gA;Bk q̂qk; (12)

gAk � ed
����������
m
+0V

r
k?
,0

sin

�
kx
a
4

�
sin

�
ky
b
2

�
cos

�
kz
c
2

�
; (13)

gBk � ed
����������
m
+0V

r
k?
,0

sin

�
kx

3a
4

�
sin

�
ky
b
2

�
cos

�
kz
c
2

�
: (14)

The upper sign refers to dot A, the lower to B, and the
operators .A;Bx are defined for both systems as .x �
j0ih0j � j1ih1j. One easily sees that the modes with
even m couple to .Ax � .Bx , those with odd m couple to
.Ax � .Bx . However, the odd modes can be suppressed by a
very thin, uncharged, and perfectly conducting wire in
the z direction along the x � a=2; y � b=2 axis of the
cavity, since they have nonvanishing tangential electrical
field at the position of the wire. We then obtain the
coupling Hamiltonian (3) with SA � .Ax , SB � .Bx , gk �
�gAk, and quantized wave vectors k � )
	4nx � 2
=a;
	2ny � 1
=b; 2nz=c
�, nx; ny; nz � 0; 1; 2; . . . . The result-
ing expressions for f	t
 and ’	t
 are divergent, and the
sum over k needs a cutoff. For a cavity made out of a real
metal a natural cutoff frequency is the plasma frequency
!p, since the metal looses its reflectivity for! > !p [21].
Converting the sums over k into integrals, defining
/	d;0
 � e2d2+0=	)2c0 �h302
, and 1 � 0 �h=2, one finds
277901-3
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f	t
 � /	d;0
~ff	t
 and ’	t
 � /	d; 0
~’’	t
 with

~ff	t
 �
1

4

Z 1

0
dx x coth	x
 c	x


�
1� cos

xt
1

�
; (15)

~’’	t
 �
1

3

Z 1

0
dx x2c	x


�
xt
1
� sin

xt
1

�
; (16)

where c	x
 is a cutoff function [to be specific, say c	x
 �
exp	�x=xmax
]. For an aluminum cavity, �h!p � 15:3 eV
[21], and we have, at T � 100 mK, 1 ’ 3:8� 10�11s and
xmax � !p1 ’ 8:8� 105. The main contribution to the
integrals therefore stems from x� 1, where we can ap-
proximate the coth function by one. For the exponential
cutoff we then have

~ff	t
 � x2max

�
1�

cos
2 arctan	txmax=1
�

1� t2x2max=1
2

�
; (17)

a function that saturates for txmax � 1 at the value x2max,
after reaching a maximum at t=1 ’ x�1

max . For quantum
dots with d � 10 nm, T � 100 mK, /	d; 0
 ’ 1:8�
10�15, and f	t
 reaches a maximum after a time of the
order 10�17 s before saturating at f	t
 ’ 0:0014. This
means that decoherence remains incomplete even for
nonsymmetric couplings, and the entanglement created
by the interaction with the heat bath is preserved, until
other decoherence mechanisms neglected in the above
analysis kick in. Note that such incomplete decoherence
is a rather general result for systems with degenerate
energy levels. In fact, by integrating the time dependent
part in Eq. (15) from zero to t one obtains for t! 1 a
Dirac delta function at x � 0, and the remaining integral
over x will give a finite constant. Thus, the time depen-
dent part of ~ff	t
 has to decay for t! 1 faster than 1=t,
leaving the time independent part

R
dx x coth	x
c	x
=4.

Note that the factor x, the spectral weight of the heat bath
at zero frequency, is essential in this reasoning.
Decoherence will always remain incomplete (in the sense
of finite f	t
 for t! 1, depending on the circumstances
even f	t
 � 1) between degenerate energy levels for spec-
tral weights that vanish at zero frequency faster than the
first power of the frequency.

The presented scheme has an advantage over conven-
tional creation of entanglement if Alice and Bob are so far
apart that a direct interaction is difficult to achieve. Since
f	t
 and ’	t
 do not depend on the volume of the cavity,
very large cavities should be possible with corresponding
large distances between Alice and Bob; using the non-
symmetric coupling scheme one might even envisage to
dispose of the cavity altogether and rely on the long
wavelength continuum of the cosmic electromagnetic
background radiation to create entanglement between
very remote quantum dots. While only a small amount
of mixed state entanglement will be created, it is well
known that all entanglement of a 2� 2 bipartite system
can be distilled into a pure entangled state [22], given
277901-4
sufficiently many realizations of the input states and local
coherent control.

In conclusion I have shown that entanglement can be
created between two qubits that interact solely with a
common heat bath with very many degrees of freedom.
The explicit example of two double-well quantum dots in
a cavity was calculated, and the phenomena of ‘‘incom-
plete decoherence’’ was revealed, which may, as much as
symmetric couplings to the environment, preserve the
entanglement created by the heat bath.

I would like to thank Fritz Haake and Walter Strunz for
many discussions on decoherence.
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