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Permutation-Symmetric Multicritical Points in Random Antiferromagnetic Spin Chains

Kedar Damle'? and David A. Huse®

YPhysics Department, Harvard University, Cambridge, Massachusetts 02138
“Department of Physics and Astronomy, Rice University, Houston, Texas 77005

3Physics Department, Princeton University, Princeton, New Jersey 08544
(Received 11 July 2002; published 20 December 2002)

We present a general theory of a class of multicritical points in the phase diagrams of random
antiferromagnetic spin chains. We show that low-energy properties of these points are almost
completely determined by a permutation symmetry of the effective theory not shared by the micro-
scopic Hamiltonian. One case provides an analytic theory of the quantum critical point in the random
spin-3/2 chain, studied in a recent work by Refael, Kehrein, and Fisher.
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Many of the interesting but poorly understood systems
of interest to current condensed-matter physics research
are quantum many-body systems with both strong
quenched randomness and strong interactions. One class
of such systems where there are some experimental re-
sults [1] and significant theoretical progress has been
possible [2—7] is antiferromagnetic Heisenberg spin
chains. Much of the physics of these systems is captured
by the model Hamiltonian

H=2Ji§i'§i+1r (L

where the operator 3‘,- represents a spin S at site i of a
linear chain. The nearest-neighbor exchanges J; are all
positive, may be random, and may have an imposed
“dimerization” §&:

Ji = J[1 + 8(=1)Texp(Rm,), @)

where R measures the strength of the randomness and the
7, are random numbers drawn from a distribution with
mean zero, variance one, and all moments finite.

This simple-looking Hamiltonian encodes a variety of
low-energy behaviors depending upon the dimeriza-
tion &, the randomness R, and the value of the spin S.
For example, for § = 1, the undimerized chain (6 = 0)
has a quantum critical point at some intermediate value
of R that separates low-disorder Haldane and high-
disorder random singlet (RS) ground states [5,6]; this
point is a multicritical point in the R-6 plane at which
three phases meet [8]. In recent work, a related transition
between low and high-disorder RS states was also seen
numerically in undimerized S = 3/2 chains [9]. Here we
examine these critical points in a larger context, showing
that they are but two members of a countably infinite class
of random multicritical points. The low-energy statistical
properties of these special points exhibit the symmetry of
the permutations of N identical objects, Sy, although for
N > 2 this is not a symmetry of the system’s bare
Hamiltonian.

To proceed, we describe the phases of the spin chain in
the valence-bond picture [10] in which each spin S is
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represented by the fully symmetrized multiplet of 2§
spin 1/2’s. The system’s ground state has total spin zero
(modulo end effects), so each such spin 1/2 forms a
singlet (a valence bond) with a spin 1/2 on a neighboring
site. Thus, we can classify a ground state by how many
such valence bonds are formed across the even links of
the lattice: call this number o. Since each spin S must
participate in 2S valence bonds, there must be (25 — o)
valence bonds across the odd links. We will denote this
valence-bond solid (VBS) ground state as being in the
(o, 2S — o) phase, or, more compactly, the o phase. For
spin S, there are (25 + 1) such phases, and various phase
transitions between them (some phase diagrams are
shown in Fig. 1). The VBS ansatz for the ground state
assumes that the valence bonds are all between nearest
neighbors, which is not precisely correct even at R = 0.
But there are indeed 25 + 1 topologically distinct possi-
bilities for the phases to which the real ground state can
belong. As suggested by the valence-bond description,
these are distinguished by the properties of a chain end:
For a chain in the o phase, if an even bond in an infinite
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FIG. 1. Schematic phase diagram of S = 3/2 chains in the
R-0 plane. Inset: Possible phase diagrams for S = 2 chains.
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chain is removed, the two resulting semi-infinite chains
have ground states that contain free spin (o /2)’s local-
ized near their ends.

The phase diagrams in the R-6 plane are simple for
zero or small R: At R =0, all the phases (with o =
0,1,...28) can be accessed by sweeping 6 from —1 to
+1, passing a succession of 2§ critical points [11]; for
integer S, the (S, S) phase that occurs around 6 = 0 is the
familiar Haldane phase [12], while for half-integer S, the
critical point between o = S = (1/2) occurs at § = 0. At
R = 0, the low-energy properties of critical points sepa-
rating phases (0,28 — o) and (o + 1,25 — o — 1) arise
from residual spin-1/2’s obtained by first forming o
valence bonds across the even links and 25 — o — 1
valence bonds across the odd links. This leaves one un-
paired spin 1/2 per site, and these spins behave as a
(critical) spin-1/2 chain. Now, since the phases are
gapped at R =0, they survive for small R as well
Likewise, the critical points must extend to critical lines
at R # 0, with the same low-energy properties as the
random-exchange spin-1/2 chain [2,3]: Along these
lines, the chain is in the spin-1/2 random singlet
(RS, ;) state. In this critical state, the residual spin 1/2
at any given site “pairs’ into a singlet with one at some
other site not necessarily close to it, with the randomness
determining the pairing; this produces a glass of single
valence bonds with specific statistical properties at low
energies [3].

The behavior in the opposite limit of strong random-
ness is also readily understood. Because of the broad
distribution of exchanges at large enough R, a spin-S ver-
sion (RSg) of the random singlet state obtains for 6 = 0.
This is a glass of 25-fold valence bonds with the same
statistical properties as the single valence bonds in the
RS, , state. Turning on § # 0 in this regime drives the
system into either the (2S5, 0) or the (0, 25) phase, so
the RSq state is a critical line at 6 = 0 separating these
two phases. Given this picture of the phase diagram in the
two limiting cases, one is immediately led to the interest-
ing possibility that all the RS/, critical lines meet the
RSg line at a single point at intermediate R and 6 = 0,
producing a multicritical point at which all 2§ + 1 dis-
tinct phases of the spin-S chain meet. Indeed, a general
theory of such multicritical points 2 at which N distinct
phases meet forms the focus of the present Letter.

We begin by addressing the question of existence:
Recent work [8] shows that the 6 = O transition from
the gapless Haldane (1,1) phase to a RS; state in S =1
chains studied earlier [5,6] is such a multicritical point
(with N = 3), where all three phases of the system meet.
In the recent RG study of the § = 3/2 case with 6 = 0, a
single quantum phase transition between a RS, /, state for
small R and a RS;/, state for large R was observed
numerically [9]. Our discussion above shows that this
transition is actually a multicritical point (with N = 4),
at which all four distinct phases of a § = 3/2 chain meet.
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For § = 2 or higher spin, the N = 2§ + 1 multicritical
point is not generically present when one only varies R
and &, to locate it requires tuning other parameters. For
S = 2, in particular, the possible topologies of the R-6
phase diagram are shown in Fig. 1.

Such multicritical points represent points at which the
local ground state of the chain can be in any one of N
possible phases. Thus, we develop a theory for the low-
energy physics of these points in terms of the domain
structure of the chain. We begin with a low-energy picture
of the chain as being made up of a sequence of domains,
each belonging to one of the N possible phases of a spin-S
chain (N = 2§ + 1). Neighboring domains are separated
by domain walls. These domain walls each carry spin:
The magnitude of the spin on a wall is given by the
number of unpaired spin 1/2’s due to the difference of
o across the wall. For two adjacent domains D; and D5,
with 0| and o, as in Fig. 2, the spin on the domain wall
separating them has magnitude S, = |o| — 0,|/2.

The low-energy properties of our chain are now con-
trolled by the effective exchange couplings between
neighboring domain-wall spins. In the absence of neigh-
boring domain walls, each domain-wall spin represents a
zero-energy multiplet, with the spin localized near the
wall. Neighboring domain-wall spins thus interact with
an effective exchange J that falls off rapidly with the
domain length, and is consequently broadly distributed in
magnitude (it can be of either sign). We allow each type of
domain, o, to have its own probability distribution for the
length of the domain and thus the exchange across the
domain. We thus have N probability distributions P(8|T")
for the corresponding log couplings 8 = In(Q2/|J|) = 0,
where ) is the cutoff energy (the strongest exchange),
and I' = In(Q,/Q) with ) a bare cutoff.

The signs of the exchanges J; in the domain picture are
dictated by the domain sequence. Consider the configu-
ration in Fig. 2, assuming that J, is the strongest of the
three exchanges shown. At energy below |J,| but above
|J,] and |J5], it should be possible to describe the system
by replacing S|, and S,; with a single effective spin S5
whose value is determined by the ground-state multiplet
of the two-spin Hamiltonian J,S;, - S,3. Consistency
requires that this must be the same as eliminating D,
and having a direct domain wall between D; and Dj
carrying spin S35 = || — o3|/2. For this to be true, J,
must be antiferromagnetic (positive) if o; — o, and
03 — 0, are of the same sign, and ferromagnetic (nega-
tive) otherwise.

This basic structure of the low-energy theory can also
be obtained from a more microscopic argument with (1)

FIG. 2. A configuration of three adjacent domains.
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as the starting point. Consider treating (1) for arbitrary S
with a generalization of the approximate extended Ma-
Dasgupta-Hu (MDH) renormalization group (RG) ap-
proach [6,9]. [For general S, the procedure eliminates
all excited states of the most strongly coupled pair of
spins if this coupling is ferromagnetic, while taking care
to eliminate only the highest excited state if it is anti-
ferromagnetic; the RG rules for signs and magnitudes of
couplings are as in Refs. [6,9].] Assign the formal domain
label o =0 (o = 25) to every even (odd) bond of the
unrenormalized Hamiltonian (1). Equation (1) with this
labeling is consistent with the rules for domain-wall spins
and signs of couplings in our domain wall model; we can
therefore formally think of each J of (1) as straddling a
domain of the corresponding type. Now, if the renormal-
ized Hamiltonian and choice of labels at a given stage of
the RG is consistent with this domain interpretation, it is
possible to relabel the couplings after each RG step to
preserve this property: Let J,S, - S»3 in Fig. 2 be the
term with the largest gap between lowest and highest
energy states. If J, > 0, and neither S;, nor Sy3 are spin
1/2, change o, to o, + (0 — 0,)/|o; — 05| after the
next RG step (which reduces both S}, and S,3 by 1/2). If
J> > 0and S;, = S,; = 1/2, attach the common label of
J, and J5 to the new coupling J 5 that reaches across them
after the next step (which puts them into a singlet state).
In all other cases, there is no need to relabel any of the
renormalized couplings.

Although this RG procedure is not exact, it is expected
to be accurate for low-energy properties [5,6,9]; the for-
mal device above thus provides an alternative route to our
domain model. Moreover, the present argument rules out
any biquadratic and other higher order interactions be-
tween domain-wall spins so long as one starts with the
Hamiltonian of (1). What about a small higher order
interaction added to the original Hamiltonian? Such a
perturbation will certainly not grow during the extended
MDH RG iterations, and the resulting low-energy model
will again have a consistent interpretation in terms of
domain-wall spins, since small higher order terms will
not affect the spin of the ground-state multiplet or the
ordering of excited states for any pair of domain-wall
spins — the dominant effect of such a term will be to
modify the relative probabilities with which different
domain sequences occur in the low-energy effective
model. Conversely, Hamiltonians with very large higher
order interaction terms may be in a different universality
class, not necessarily described by the present results.

To proceed further, we need to specify the probabilities
with which different domain sequences occur. We do this
within a nearest-neighbor transfer matrix formalism.
Thus we have a symmetric, purely off-diagonal N X N
transfer matrix W, which gives the relative weights for
the two types of domains o # ¢’ to be present and
adjacent to each other. We normalize W to make its largest
eigenvalue +1 (we denote the components of the corre-
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sponding normalized eigenvector as ,/p,). This guaran-
tees that the ‘“‘partition function” (sum over all pos-
sible domain configuratins) Z, = Tr(W’) for a sequence
of L domains with periodic boundary conditions tends to
unity as L — oo. The unconditional probability for a given
segment, say ... U Up M. -- -, tO OCcur in the spatial se-
quence of domain types is now given by modifying the
expression for Z by introducing appropriate projection
operators HZ » = 04084, at the corresponding places
in the product of W'’s, yielding the expression
Tr(... WIH#«WIT# WII#<W ...). Thus, the probability
of the kth domain being type u is p,, that of the kth
domain being type u and the (k + 1)th being type v is
JPuPu Wy, ete. (for L — 0).

Given the broad probability distributions P, of the log
couplings B in our domain model, we can analyze the
low-energy properties using a strong-disorder RG ap-
proach [5] that eliminates, at each step, all excited states
of the strongest-coupled pair of remaining domain-wall
spins (this procedure is expected [3,5] to yield asymptoti-
cally exact results for low-energy properties). For our
domain-wall model, the strong-disorder RG action is
rather simple, and does not generate any correlations
between domains beyond those given by the nearest-
neighbor transfer matrix W: Let J, of Fig. 2 be the
strongest bond in the chain. At each step, this RG “in-
tegrates out” the domain (in this case D,) straddled by
the strongest coupling: If o; # o3, D, is eliminated, a
direct domain wall between D and D5 is formed, and the
signs, but not the magnitudes, of J; and J5 are altered (if
necessary) to conform to the requirements of the sign
rule for this new configuration. If oy = o3, D, is elimi-
nated and D; and D; are merged together into one do-
main. This merged domain is straddled by a renormalized
coupling of magnitude |J,3] = |J;J3/J,| and sign deter-
mined by our sign rule. [These RG rules remain unaf-
fected in the strong-disorder limit if a small additional
higher order interaction between domain-wall spins is
also present.] A little bookkeeping yields the RG flow
equations corresponding to this procedure:

AW ;o W, o
d;g =V0'0"_ ;’0’ [Pg'—"_P?,—/_Voa'_Vo"o"]’
oP oP
a_I:T:@—FP?rPU(BlF)—Fvcra'(Po'®Pa'_Po'), (3)
dL
— =—L[p-P'+7Y],
T [p ]
where V=3, Wo,POW,5 P)=P,0), P,®

P, = [[dB1dBrP(BiID)P,(BID)S(B = B — o), ¥ =
>, PV p P°=3, p, P and the sums run over the
labels of the N domain types. Moreover, the flow of W
also induces a change in p:

d
PP Ve —p P Y @)
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The multicritical point Py is controlled by a fixed point
of these equations with S statistical symmetry cor-
responding to freely interchanging between the N phases
that meet at this point. This fixed point has W,, =1/
(N=DY u#v, P,BIT)=(N=1)e “VET/T Yy,
and p,=1/NV . Also, the number of domains de-
creases with the cutoff as L(I")=L(0)/T'"/¥~, with the
exponent ¢y = 1/N. Thus, all N domain types are equally
likely at this fixed point, with any two types of domains
equally likely to be adjacent to each other. The frac-
tions p, of the domain walls in the low-energy effective
Hamiltonian that have spin S follow simply from this. In
the §=3/2, N =4 case, we predict 1/, =4, p;»=1/2,
p1=1/3, and p3/, =1/6; the numerical estimates of [9]
are in reasonable agreement with these results. (The low-
temperature specific heat and susceptibility at the critical
point are completely determined [3,5,6,9] by ¢ and p;.)

To get information on off-critical scaling properties,
we need to analyze small perturbations about this Py
fixed point. Fortunately, the Sy symmetry imposes
enough structure on the linearized flows to allow a
full calculation of all RG eigenvalues A which govern
the I'* growth or decay of the corresponding eigen-
perturbations: There are only N — 1 relevant eigenvec-
tors, all having eigenvalue Ay, = (v4N + 1 — 1)/2. Since
one has to tune N — 1 “knobs” in general to get N phases
to all be “degenerate,” this coincides with the minimal
possible number of relevant directions at a N-fold multi-
critical point; thus, this Sy fixed point governs all such
strongly random N-fold multicritical points of (1) and its
generalizations that include small additional biquadratic
and higher order couplings. [In contrast, usual (nonran-
dom) N-fold multicritical points in Landau theory or in
two dimensions do not generically have Sy low-energy
symmetry for N > 2 [13].] The relevant eigenvectors can
be chosen to correspond to perturbations which make
only one of the N phases fall out of favor, thus reducing
the symmetry from Sy to Sy_;. In addition we have one
irrelevant eigenvector with eigenvalue —1 (representing
an additive shift in I'), for N > 2 there are N — 1 irrele-
vant eigenvectors with eigenvalue —(v4N + 1 +1)/2,
and for N > 3 there are N(N — 3)/2 irrelevant eigen-
vectors with eigenvalue —N. (We also expect [3] other
“infinitely” irrelevant perturbations, i.e., decaying expo-
nentially with I'; these are not considered here.)

In the S = 3/2, N = 4 case, we thus predict a relevant
eigenvalue of A; = (/17 — 1)/2, and a correlation length
exponent v = 1/} iy = 2.56 (note that the numerical
estimate of [9] differs significantly from this prediction,
probably due to slow transients or finite-size effects).
Deviations from 2, in the R-8 plane contain linear com-
binations of the three relevant perturbations. The fact that
the RG eigenvalues are all the same means that the phase
boundaries come in linearly at P,,. The slope of two of the
four phase boundaries is fixed by noting that any phase
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boundary between phases related by the 6 — —§& sym-
metry of the problem (corresponding to an interchange of
even and odd sites) must lie on the R axis. The same
symmetry forces the the remaining two to be reflections
of one another about the R axis. Moreover, thinking in
terms of the relative energies of different VBS states
makes it clear that both these phase boundaries must leave
P, sloping downwards (see Fig. 1).

Finally, it is now clear that the generic phase diagram
in the R-0 plane for § = 2 will look like one of the two
insets shown in Fig. 1, with the putative S5 symmetric
point Pj splitting into lower-order multicritical points as
shown. Such lower-order points are described by fixed
points of the RG with a lower symmetry S, (with M <
N =28 + 1) at which domains of M phases each occur
with equal probability and other domain types do not
occur at low energies [14]. All five phases of the S = 2
chain will only meet at P5 upon fine tuning some addi-
tional parameter in the model (such as nearest-neighbor
interactions more general than simply the exchange
S; * S;+1)- Similar considerations also rule out the generic
occurrence of such maximally symmetric multicritical
points in the R-6 plane for all § > 2.
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