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Spatially Resolved Dynamics of Localized Spin-Wave Modes in Ferromagnetic Wires
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We have observed localized spin-wave modes in individual thin-film ferromagnetic wires using
time-resolved Kerr microscopy as a micron-scale spectroscopic probe. The localization is due to the
internal field profile present when an external field is applied in the plane of the film and perpendicular
to the long axis of the wire. Spatially resolved spectra demonstrate the existence of distinct modes at the
edges of a rectangular wire. Spectral images clearly show the crossover of the two edge modes into a
single mode in low applied fields, in agreement with the results of micromagnetic simulations.
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FIG. 1. Top: The experimental configuration. The orientation
of the wires with respect to the stripline is shown for the
BWVMS and DE geometries. Bottom: Time response (left) and
frequency response (right) of the polar Kerr rotation after a
120 ps field pulse for a 5 �m wide wire with an external field of
100 Oe applied perpendicular to its long axis. The three panels
show the response measured at three different locations on the
wire: (a) at the center, (b) 1:5 �m from the center, and
axes of the wires are either parallel or perpendicular to
the external field, which is always in the plane of the film.

(c) 2:3 �m from the center, which corresponds to the edge of
the wire.
An important aspect of the physics of nanostructures is
how spin dynamics are influenced by both geometric
confinement and magnetic microstructure. In addition to
determining parameters of technological relevance, such
as switching times in recording media [1], the collective
modes of patterned thin films also pose a problem of
fundamental physical interest. They cannot be described
completely as purely magnetostatic modes [2] or as
simple spin waves [3]. In patterned thin films, the com-
petition between the magnetostatic and exchange energies
can lead to unique excitations, for which spectroscopic
evidence has been found in recent Brillouin light scatter-
ing measurements on arrays of ferromagnetic wires [4].
An investigation of these modes, which can be qualita-
tively described as localized spin waves, is an essential
step in achieving a complete understanding of the micro-
magnetic dynamics of low-dimensional structures.

This Letter reports the direct observation of localized
spin-wave modes in individual thin-film ferromagnetic
wires using time-resolved scanning Kerr microscopy
[5–7] as a local spectroscopic probe. The effective con-
finement of these modes is produced by the demagnetiz-
ing field when the applied field is in the plane of the film
and perpendicular to the axis of the wire [4]. In suffi-
ciently large magnetic fields, these modes exist along each
edge of the wire in addition to the conventional ferro-
magnetic resonance (FMR) mode at the center. Our
measurements show a crossover from this multimode
structure to a single mode as the applied field decreases
and the barrier between the two edge modes disappears.

Permalloy wires of width 2 and 5 �m were patterned
on GaAs substrates by electron beam lithography, sput-
tering of 18 nm thick Ni0:81Fe0:19, and liftoff. The wires
are 1 mm long, and the center-to-center spacing is 15 �m.
The GaAs substrates are polished to a thickness less than
30 �m and are then positioned over the center of a
tapered microstrip line, with the external static field
perpendicular to the microwave magnetic field. The
samples can be rotated on the stripline so that the long
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The experimental geometry is shown in the top panel of
Fig. 1. We will use the terminology applied to Brillouin
light scattering experiments [8], with the understanding
that the relevant wave vectors q for the excitations under
investigation are in the plane of the wires and perpen-
dicular to their length. Our discussion will focus on the
configuration in which Ha k q, where Ha is the dc applied
field. This is abbreviated as the BWVMS (or backward
volume magnetostatic spin-wave) geometry [8]. The con-
figuration in which Ha ? q (i.e., the field is parallel to the
wire) will be referred to as the Damon-Eshbach (DE)
geometry [9].

For the time-resolved Kerr microscopy (TRKM) mea-
surement [5], a 76 MHz train of 150 fs pulses from a
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Ti:sapphire laser (� � 810 nm) is split into two beams.
One beam is incident on a fast photodiode, creating a
current pulse of 120–150 ps FWHM (full-width at half-
maximum) that is discharged into the stripline. This
creates an inplane field pulse at the sample with an
amplitude of 5–10 Oe. The second beam, used as the
probe, is focused on the sample using an objective lens
with a numerical aperture of 0.85, and the polar Kerr
rotation of the reflected probe beam is measured with a
polarization bridge. The probe spot FWHM (aberration
limited) is 1 �m. The timing between the pump and
probe pulses is controlled by a mechanical delay line.
The signal is detected using a lock-in referenced to the
pump-beam chopper, so that only the pump-induced Kerr
rotation, averaged over many pulses, is recorded. Figure 1
shows the polar Kerr rotation as a function of pump-probe
delay for three different positions of the probe beam on a
5 �m wide wire. These data, which are proportional to
the component of the magnetization perpendicular to the
plane of the film, were obtained in a field of 100 Oe
applied in the BWVMS geometry. Fourier transforms of
these free induction decays are shown in the right-hand
panels of Fig. 1. The response at the center of the wire,
shown in Fig. 1(a), is simple precession of the magneti-
zation. However, a second, lower frequency is observed as
the objective is moved towards the edge of the sample, as
shown in Figs. 1(b) and 1(c).

A more complete picture is revealed by examining the
full spatiotemporal images shown in Fig. 2. The panels on
the left are a compilation of successive snapshots of a
FIG. 2. The out-of-plane component of the magnetization is
shown in time-domain images of a cross section of a 5 �m
wire. The three lower rows show images in fields of 50, 100, and
200 Oe applied perpendicular to the long axis of the wire.
Black and white indicate positive and negative magnetization.
The right-hand panels show the same cross section in the
frequency domain. The top panels, labeled DE, show images
at 200 Oe in the Damon-Eshbach geometry, with the applied
field along the axis of the wire. Note that the edge modes do not
appear in the DE geometry.
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cross section of a 5 �m wire, obtained in 20 or 40 ps
steps. We focus first on the three lowest panels, which are
polar Kerr images obtained in the BWVMS geometry. At
200 and 100 Oe, a clear beating pattern is observed near
the edges of the wire. At 50 Oe, the beating extends over
the entire sample. Spectral power images are obtained by
Fourier transformation of the time-domain data at each
position and are shown in the right-hand panels of Fig. 2,
which clearly show distinct modes localized near the
edges of the wire at 100 and 200 Oe. In contrast, images
obtained in the longitudinal (DE) geometry, with the
magnetic field parallel to the wire, show only a single
uniform precession frequency corresponding to the low-
est Damon-Eshbach mode. Time domain and spectral
images in a field of 200 Oe in the DE geometry are shown
in the top panels of Fig. 2.

A detailed view of the evolution of both the center and
edge modes is provided in Fig. 3, which shows a succes-
sion of spectral images at different magnetic fields for a 2
and a 5 �m wire. This figure demonstrates several im-
portant facts about the localized edge modes. The con-
finement is strongest at the highest magnetic fields. In the
case of the 2 �m wire at 400 Oe, the edge and center-
mode images overlap in space, although the edge mode
can still be resolved spectrally as a weak satellite of the
FIG. 3. Frequency domain images of cross sections of the 2
and 5 �m wires at various magnetic fields. Note the crossover
to a single mode in the 2 �m wire in applied fields below 75 Oe.
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FIG. 4. (a) Experimental and theoretical results for the center
and edge modes. The experimental frequencies of the edge and
center modes for the 2 �m wire are shown as solid triangles.
Only a single mode exists below 75 Oe. The two solid curves are
the theoretical values for the center and edge modes calculated
from the dispersion relation as described in the text. The open
squares are the mode frequencies calculated using a full
Landau-Lifshitz-Gilbert (LLG) simulation. (b) The frequency
domain response of a cross section of the wire at 200 Oe
calculated by the LLG method. (c) The response calculated
at 25 Oe.
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dominant center-mode peak. As the magnetic field de-
creases, the frequencies of both the center and edge
modes decrease, and the spatial extent of the edge modes
grows while that of the center mode shrinks. In the case
of the 2 �m wire, the modes merge below 75 Oe into a
single mode spanning the entire wire. The same process
appears to occur in the 5 �m wire at a lower magnetic
field. At the lowest fields, the single mode observed in the
2 �m wire actually increases in frequency as the external
field decreases.

The data obtained here confirm directly the interpre-
tation of Brillouin light scattering measurements by
Jorzick et al. [4], who identified a nondispersive mode
in the BWVMS spectrum of wire arrays as a localized
spin wave. The images of Fig. 3 demonstrate that this is
indeed the case. We now turn to a detailed interpretation
of the magnetic field dependence, for which the spectral
images are particularly useful. For spin waves propagat-
ing in a thin film along the direction of the magnetic field
with in-plane wave vector q, the dispersion relation ��q�
is [10]
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where � is the gyromagnetic ratio, H is the total internal
field, including the demagnetizing field, A is the spin-
wave stiffness, Ms is the saturation magnetization, and d
is the film thickness. We have ignored dispersion due to
the out-of-plane component q? of the wave vector. The
dynamic correction to the demagnetization energy in the
last term of Eq. (1) is extremely important because it leads
to a minimum in the dispersion relation at nonzero q in
the BWVMS geometry. The uniform mode (q � 0) is
therefore unstable with respect to the formation of
smaller wavelength excitations as long as some means,
such as multimagnon scattering, is available to conserve
momentum.

One approach to solving for the allowed modes of the
wire follows Jorzick et al., who used the WKB argument
of Schlömann and Joseph [11]. This is based on the ob-
servation that the equation of motion for the magnetiza-
tion vector has the same form as a Schrödinger equation,
and bound states can then be found from the Bohr-
Sommerfeld quantization condition

Z x2���

x1

q��;H�x��dx � n	: (2)

This equation can be solved for � once the turning points
x1 and x2��� are known. The outer turning point x1 is
determined by making the assumption that spin waves
will not propagate into the region at the edge of the wire
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where the magnetization rotates towards the wire axis
[4,12]. The boundary of this region is the position where
the sum of the applied and demagnetization fields vanish,
and this is computed by treating the poles at the edges of
the wire as magnetic charges. The second turning point x2
is the position corresponding to the internal field at which
there is no longer a real wave vector associated with the
frequency �. Practically, it is found by searching for the
field that has a minimum in the dispersion relation at a
given frequency �, and then using the calculated field
profile to find the turning point x2���. This approach
allows for the solution of Eq. (2) to be automated easily.

The solutions of Eq. (2) for n � 1 correspond to the
edge modes seen in Fig. 3. We have solved for these using
the parameters �=2	 � 2:95 GHz=kOe, A � 1:3�
10�6 erg=cm, Ms � 700 emu=cm3, and d � 17:5 nm.
The value for Ms is the average (700	 40 emu=cm3) of
FMR measurements on a witness film sample, a magnetic
moment measurement by vibrating sample magnetometry
(VSM), and a VSM measurement of the perpendicular
saturation field. The frequencies corresponding to the
n � 1 solutions of Eq. (2) are shown in Fig. 4(a) as the
lower solid curve. The dominant contribution to the re-
sponse at the center of the wire comes from the q � 0
modes of the dispersion relation. The frequencies for
these uniform FMR modes, calculated from Eq. (1) using
the internal field at the center of the wire, are shown for
277201-3
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the 2 �mwire in Fig. 4(a) as the upper solid curve. As can
be seen in Fig. 4(a), there is excellent qualitative and fair
quantitative agreement between the model calculations
and the edge and center-mode frequencies observed for
the 2 �m wire above 75 Oe. However, as the applied field
decreases, the experimental edge mode frequencies drop
faster than the model predicts. Below 75 Oe, the effective
barrier between the two edge modes disappears, and the
center-mode frequency calculated from the model drops
to zero. This occurs when the sum of the applied field and
demagnetizing field is zero at the center of the wire. In
order to describe the region near and below this critical
field, we turn instead to a micromagnetic description of
the dynamics using the discretized Landau-Lifshitz-
Gilbert (LLG) equation [13],
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where Heff is the total effective field, which includes the
applied field, demagnetizing field, and exchange field, �
is the Gilbert damping parameter, and the subscript i
indexes square cells, inside of which the magnetization
and effective field are assumed to be uniform. Equation (3)
was solved numerically for 2 �m by 32 �m wires
using the object-oriented micromagnetic framework
(OOMMF) [14] and a cell size of 20 nm. The system
was first relaxed from a fully magnetized state with a
large damping parameter � � 0:5. The relaxed state was
then taken as the initial condition for the dynamical
calculation, which was undertaken with a realistic damp-
ing parameter � � 0:008. A Gaussian pulse with a
FWHM of 150 ps and an amplitude of 10 Oe was applied,
and the response over the next 5 ns was calculated using
10 ps steps during the pulse and 50 ps steps after the
pulse. A spectral image of a cross section of the wire was
then constructed in a manner analogous to our analysis of
the experimental data. An image obtained at 200 Oe is
shown in Fig. 4(b), in which the edge and center modes
are clearly visible. Frequencies of the edge and center
modes determined from the LLG calculations are shown
in Fig. 4(a) as open squares.

At high fields, the edge mode frequencies from the LLG
calculation agree well with the WKB approach. The LLG
values for the center-mode frequencies are also in fair
agreement with those from the simple analytical model.
Significantly, the LLG calculations show a single domi-
nant mode when the applied field is less than the shape
anisotropy field, as can be seen in the spectral image at
25 Oe shown in Fig. 4(c). This is in qualitative agreement
with the experimental results shown in Fig. 3, although
the experimental frequency is lower. There is no confine-
ment in this regime, because the internal field perpen-
dicular to the long axis is uniformly zero across the wire,
and hence only a single mode exists. We note that the
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experimental edge mode frequencies are consistently
lower than all sets of theoretical predictions below
150 Oe. We do not have a detailed explanation for this
observation, although it should be emphasized that in the
external field regime where the edge modes merge, the
magnitude of the pulsed field becomes comparable to
the internal field. In this case, nonlinear effects may
become important.

In summary, we have imaged localized spin-
wave modes in isolated ferromagnetic wires using
time-resolved Kerr microscopy as a micron-scale spec-
troscopic probe. Analytical calculations and a micromag-
netic approach provide an excellent qualitative
description of the observed dynamics. Finally, we note
that the spectroscopic imaging approach adopted here can
be generalized to other inhomogeneous magnetic sys-
tems, including lithographically patterned films as well
as domain structures.
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