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Exotic Order in Simple Models of Bosonic Systems
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We show that simple Bose Hubbard models with unfrustrated hopping and short range two-body
repulsive interactions can support stable fractionalized phases in two and higher dimensions, and in
zero magnetic field. The simplicity of the constructed models advances the possibility of a controlled
experimental realization and novel applications of such unconventional states.
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FIG. 1 (color online). Josephson junction array on a 2D bond-

occurs at intermediate values of density somewhere be-
tween the extreme low density Wigner crystal and the
high density Fermi liquid regimes. Similarly, electronic

centered square lattice modeled by the Hamiltonian Eq. (1).
Each shaded area indicates schematically cluster charging
energy UN2

r .
Recent theoretical developments [1–4] have shown that
two- or three-dimensional strongly correlated systems in
zero magnetic field could display quantum phases with
fractional quantum numbers. This theoretical progress,
inspired mostly by the search for a theory of the high-
temperature superconductors [5], is likely to play an im-
portant role in our eventual understanding of the
mysterious properties of several strongly interacting elec-
tronic systems. However, until now, no such experimental
system has been unambiguously shown to display frac-
tional quantum numbers. Further impetus for the search
for experimental realizations of fractionalization comes
from the possibility of using such states to construct
qubits [6,7]. The topological structure inherent in these
states naturally protects the system from decoherence.

The primary goal of this paper is the identification and
possible design of specific condensed matter systems
which display the phenomenon of fractional quantum
numbers. To that end, we study particularly simple models
of bosons with unfrustrated hopping and short ranged
two-body repulsive interactions on a two-dimensional
(2D) square lattice. We show that, in particular parameter
ranges, a fractionalized insulating phase exists where
there are excitations whose charge is one-half that of
the underlying bosons. Superfluid or more conventional
insulating phases result in other parameter ranges. The
simplicity of our models opens up the possibility that they
can be realized in arrays of quantum Josephson junctions,
or possibly in ultracold atomic gases. This would provide
a definite experimental realization of a fractionalized
phase which could then possibly be exploited to construct
topologically protected qubits.

The fractionalized phase appears in a region of inter-
mediate correlations where neither the boson kinetic en-
ergy nor repulsive potential energy completely dominates
over the other. This lends support to the general notion
that fractionalization is to be looked for in a many-body
system at intermediate correlations. For example, in the
interacting electron system, fractionalization possibly
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Mott insulators that are close to the metal-insulator tran-
sition may be good candidates for fractionalization.

The generalization of our models to three dimensions
(3D) is of some interest. The 3D version of our boson
Hubbard model has in fact two distinct fractionalized
insulating phases: First, there is a fractionalized phase
similar to the one in 2D, with the distinct excitations
being a charge-1=2 chargon and a Z2 vortex (vison) line.
The topological order in this phase is stable up to a finite
nonzero temperature. Experimental realization of this
phase may therefore be of interest for the quantum com-
puting application as a way of controlling errors due to
nonzero temperature. Another distinct fractionalized in-
sulator also appears in 3D. In this phase, the excitations
are a gapped charge-1=2 chargon, a gapless linear dis-
persing ‘‘photon,’’ and a gapped topological point defect
(the ‘‘monopole’’). Wen [8] has recently pointed out that
stable mean field theories may be constructed for quan-
tum phases where a masslessU�1� gauge boson (a photon)
emerges in the low-energy description. Our results pro-
vide an explicit and concrete model for such a phase.

Fractionalization of bosons in two dimensions.—Con-
sider bosons moving on the lattice shown in Fig. 1. A
physical realization may be a Josephson junction array
 2002 The American Physical Society 277004-1
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FIG. 2. Schematic phase diagram of the boson Hubbard
model Eq. (1) for a particular cut w � w1 ’ w2 and ub ’ u 
through the parameter space.
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with superconducting islands arranged on the sites of the
‘‘bond-centered’’ square lattice and Josephson coupled
with each other as indicated by the links.We also stipulate
repulsive interactions between the bosons (‘‘charging en-
ergy’’) that favors charge neutrality not only on indi-
vidual islands but also on the shaded clusters (note that
neighboring clusters share one site) [9]. The correspond-
ing Hamiltonian is

H � �w1

X
r;r02r

�byr  rr0 � H:c:�

� w2

X
	rr0r00


� y
rr0 r0r00 � H:c:� � ub

X
r

�nbr �2

� u 
X
hrr0i

�n rr0 �
2 �U

X
r

N2
r : (1)

Here, byr � ei�r represent bosons (Cooper pairs) residing
on the corner sites of the lattice, and  y

rr0 � ei�rr0 repre-
sent bosons on the bond-centered sites (identified by the
bond end points); nbr , n rr0 are the corresponding boson
numbers, 	�r; nbr 
 � i, and similarly for the  bosons.
Throughout, we work with a number-phase (quantum
rotor) representation of the bosons, as is particularly ap-
propriate in the Josephson junction array realization [10].

The w1 term is a boson hopping (Josephson coupling)
between the corner and the bond-centered sites, and
r0 2 r sums over all such bonds emanating from r. The
w2 term is a boson hopping between the neighboring
bond-centered sites as indicated with dashed lines in
Fig. 1. The ub and u terms represent on-site boson
repulsion, while the U term is the cluster charging energy
that favors charge neutrality in each cluster. The operator
Nr associated with each cluster is defined through

Nr � 2nbr �
X
r02r

n rr0 : (2)

The total boson number of the system is Ntot �
1
2

P
r Nr.

Both the b bosons and the  bosons are assigned charge
qb. The model has only a globalU�1� charge conservation
symmetry.

For large w1; w2 
 ub; u ; U the system is a superfluid.
In the opposite limit, ub; u ; U 
 w1; w2, the system is a
conventional Mott insulator with charge quantized in
units of qb. We argue below that when the charging
energies U and ub; u are varied separately, there is an
intermediate regime U 
 w1; w2 


���������
ubU

p
;

����������
u U

p
, in

which the system is a stable fractionalized insulator
with charge qb=2 excitations and charge 0 visons above
a ground state with no conventional broken symmetries.
A schematic phase diagram of our model is shown in
Fig. 2.

The analysis in the limit of large cluster interaction
U 
 w1; w2; ub; u is similar to that in the large U limit
of the electronic Hubbard model at half filling. If the
other terms are all zero, there is a degenerate manifold of
ground states specified by the requirement Nr � 0 for
each r (recall that the operators nbr and n rr0 are defined
as conjugates of the corresponding phase variables and
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have eigenvalues that can take all integer values including
negative ones; thus, the constrained Hilbert space Nr � 0
is indeed nontrivial). This ground state sector is separated
by a large charge gap U from the nearest sectors.
Including the w1; w2; ub; u terms lifts the degeneracy
in each such zeroth-order sector, and this is best described
by deriving the corresponding effective Hamiltonians for
small perturbing couplings.

Consider the ground state sector Nr � 0 for all r. An
elementary calculation gives

H�0�
eff � Hub;u � Jbond

X
hrr0i

	� y
rr0 �

2brbr0 � H:c:


� Kring

X
�

� y
12 23 

y
34 41 � H:c:�; (3)

where Hub;u stands for the on-site repulsion terms as in
Eq. (1), Jbond � w2

1=U, and Kring � 2w2
2=U.

A simple change of variables shows [4] that H�0�
eff to-

gether with the constraint Nr � 0 can be regarded as the
well-studied [11] �2� 1�D compact U�1� gauge theory
coupled to a charge 2 scalar field. In �2� 1�D, there are
two distinct phases shown in Fig. 3. For Jbond; Kring & ub;
u , the gauge theory is ‘‘confined,’’ and all excitations
carrying nonzero ‘‘gauge charge’’ are confined. Zero
gauge charge excitations carrying physical charge quan-
tized in units of qb of course exist with a gap of order
2U. This is the conventional Mott insulator of our
boson model.

In the opposite regime, Jbond; Kring * ub; u , the gauge
theory is in the ‘‘deconfined Higgs’’ phase. Objects with
Nr � 1 at some site, i.e., physical charge qb=2 (chargon),
have gauge charge 1, are not confined, and can propagate
above a finite gap of orderU. There is also a stable gapped
Z2 vortex excitation (vison). The deconfined phase has a
topological order [12,13]: e.g., the ground state is twofold
degenerate on a cylinder, obtained by threading no or one
vison through the hole of the cylinder.

The details of the chargon motion are determined by
the effective Hamiltonians that obtain in the charged
sectors. Straightforward calculation shows that the pres-
ence of the chargon induces a weakening of the back-
ground on the bonds and plaquettes that are connected to
277004-2
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FIG. 4. Large U insulating phases of the 2D boson model at
half filling, Eq. (6). The region of stability of the fractionalized
phase is enhanced compared with Fig. 3 at integer filling. There
may be several (?) nonfractionalized insulating states with
broken translational invariance; here, we focus on the fraction-
alized state only.

J b
on

d
u b/

ψu/Kring

Fractionalized Insulator
Deconfined Higgs

Confined
Conventional Mott Insulator

FIG. 3. Diagram of the large U insulating phases of the boson
model Eq. (1) in two dimensions. The effective Hamiltonian
Eq. (3) is equivalent to the �2� 1�D compact QED gauge
theory coupled to a charge 2 scalar. The Mott insulator is
conventional or fractionalized depending on whether the ef-
fective gauge theory is confined or deconfined.
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it: J0bond �
1
4 Jbond, K0

ring �
5
8Kring. Of course, chargon

confinement/deconfinement is controlled entirely by
the bulk Jbond; Kring vs ub; u terms that obtain far away
from the chargon location and is as expected by looking
at H�0�

eff only.
Ground state wave functions and topological order.—A

good caricature for the ground state wave function of
H�0�

eff , Eq. (3), is obtained by ‘‘Gutzwiller’’ projecting a
superfluid state into the sector Nr � 0,

j�i � P0j�r � �rr0 � 0i �
X

fnbr ;n
 

rr0
g

0
jfnbr ; n

 
rr0 gi; (4)

where the last form is written in the boson number basis
and the primed sum is over all configurations such that
Nr � 0 at every site r. This is the exact ground state wave
function when ub � u � 0 but is not normalizable. A
normalizable wave function is obtained by introducing a
cutoff for large occupation numbers at each site as is
appropriate for nonzero ub; u . Below, we leave any
such cutoff procedure implicit.

A topologically distinct ground state on a cylinder is
obtained by Gutzwiller projecting a superfluid state with
one vortex threading the cylinder [14]:

j�vi �
X

fnbr ;n
 

rr0
g

0
��1�N

 
col jfnbr ; n

 
rr0 gi; (5)

where N 
col is a sum of n rr0 in a given columnar ‘‘cut’’ of

x̂x-directed links (assuming the cylinder is defined by
periodic boundary conditions along x̂x). Because of the
constraints, the parity of N 

col is the same for all columns
so that the location of the cut is arbitrary. The projected
vortex state describes one vison threading the hole of the
cylinder.

The presence of topological order is established by
noticing that the normalized overlap h�j�vi=h�j�i
goes to zero as O�e�cLy� with the system size [15], and
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that all local physical operators are the same in the two
states since the column defining N 

col can be deformed
away from any such operator. Thus, the states with no or
one vison are indeed orthogonal to each other and degen-
erate in the thermodynamic limit.

The boson Hamiltonian Eq. (1) is unfrustrated, in the
sense that the hopping amplitudes are all positive. It is
well known then that the ground state wave function is
unique and has positive amplitudes in the boson number
basis. This does not contradict the topological order in the
fractionalized state. The column parity ��1�N

 
col is con-

served by the Hamiltonian H�0�
eff , and the theorem applies

to H�0�
eff only separately in the even and odd sectors on the

cylinder. By taking the combinations j�i � j�vi, we in-
deed obtain positive wave functions that reside com-
pletely in the even or odd sectors. As far as the bare
boson Hamiltonian Eq. (1) is concerned, it is more ap-
propriate to speak of the states with no or one vison.

Variations in 2D.—A simple variation of the model
considerably enhances the region of stability of the frac-
tionalized phase. Consider ‘‘half filling’’ for the site
bosons described by the modified Hubbard repulsion
terms,

Hub;U � ub
X
r

�
nbr �

1

2

�
2
�U

X
r

�Nr � 1�2: (6)

All other terms are unchanged. In the large U limit, the
corresponding compact QED theory now has static
charges �1 placed on the A andB sublattices, respectively
[4], and is at half filling for the gauge charge 2 matter
field. The fractionalized insulator now occupies a larger
area and extends all the way to infinitesimally small
Jbond=ub for infinitely large Kring=u as shown in Fig. 4.
It is also more stable for large Jbond=ub due to frustration
coming from the Berry phase terms in the corresponding
Ising gauge theory [16].
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FIG. 5. Same as in Fig. 3 but in three dimensions. There is an
additional fractionalized phase, the ‘‘Coulomb’’ phase, with the
distinct excitations being a gapped charge qb=2 chargon, gap-
less photon, and a gapped monopole.

VOLUME 89, NUMBER 27 P H Y S I C A L R E V I E W L E T T E R S 30 DECEMBER 2002
In the model Eq. (1), chargons are bosonic excitations.
However, as noted above, the background couplings are
weakened in the vicinity of a chargon. It is then plausible
that the corresponding K0

ring < 0 in some model, in which
case it is energetically favorable for a vison to bind to the
chargon thus forming a fermionic excitation. This possi-
bility is indeed realized when we modify our model
slightly by allowing some frustration in hopping [15].
Thus, we obtain an explicit boson model that has an
insulating phase with fermionic excitations carrying
fractional charge. If this unusual insulator is doped, we
would obtain a Fermi liquid, i.e., a metallic phase in a
boson model, a true Bose metal.

Three dimensions.—Consider now the 3D version of
our boson model on a bond-centered cubic lattice.
Proceeding as before, the large U Mott insulating states
are described by the effective Hamiltonian H�0�

eff , Eq. (3),
which is equivalent to the �3� 1�D version of the com-
pact U�1� gauge theory coupled to a charge 2 scalar. The
phase diagram is shown in Fig. 5, and now has three
distinct phases. The ‘‘confined’’ phase is the conventional
Mott insulator. The deconfined Higgs phase is similar to
the fractionalized phase in two dimensions. The distinct
excitations here are gapped charge qb=2 chargon and
neutral Z2 vortex loop (vison). The vison excitation en-
ergy is proportional to the loop length, and the loops do
not proliferate up to a finite temperature. Thus, in this
phase in 3D, the topological order is stable for small finite
temperature (unlike 2D where a finite density of ther-
mally excited point visons destroys the topological order
at any nonzero temperature).

Finally, the ‘‘Coulomb’’ phase is also fractionalized. In
this phase, the low-energy theory in the ground state
sector is that of the pure gauge �3� 1�D compact QED
in its Coulomb phase, and has a gapless linearly dispers-
ing gauge boson (photon) and a gapped topological point
defect (monopole) as its distinct excitations. The charged
sector has charge qb=2 excitations above the gap U, but
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these now interact via an emergent long-range Coulomb
interaction. It is quite surprising that a simple Hamil-
tonian such as Eq. (1) can have such an unusual phase.

Discussion.—The most intriguing aspect of this paper
is the simplicity of the Hamiltonians that realize a variety
of unconventional quantum phases, and the possibility
that such systems may actually be made in a laboratory.

In 2D, one likely realization may be a Josephson
junction array. The particular Hubbard terms can in prin-
ciple be achieved by controlling the electrostatics of the
islands [7,9]. Possible techniques for detecting fractions
of charge are discussed in Ref. [17]. Of direct relevance
for the implementation of topologically protected qubits
is the vison trapping experiment: A 2� vortex remains
trapped in a hole in the system even when the system is
cycled from the superfluid to the fractionalized insulator
and back. For this to work, one needs to go to tempera-
tures well below the vison gap. Such flux trapping corre-
sponds directly to the ability of the qubit to retain its state
in the experimental environment. In this context, we want
to note again that in 3D, unlike 2D, the topological order
is not destroyed by small finite temperature.
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