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Spin-Orbit Coupling, Antilocalization, and Parallel Magnetic Fields in Quantum Dots
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We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots.
Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically.
Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak localization,
consistent with random matrix theory results once orbital coupling of the parallel field is included. In
situ control of spin-orbit coupling in dots is demonstrated as a gate-controlled crossover from weak
localization to antilocalization.
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FIG. 1. Average conductance hgi (squares) and variance of
conductance var�g� (triangles) calculated from �200 statisti-
cally independent samples (see text) as a function of perpen-
dicular magnetic field B? for (a) 8:0�m2 dot, (b) 5:8�m2

center-gated dot, and (c) 1:2�m2 dot at T � 0:3K, along with
fits to RMT (solid curves). In (b), the center gate is fully
as magnetic fields in the electron frame), leading to
momentum dependent spin precessions due to crystal

depleted. Vertical lines indicate the fitting range; error bars
of hgi are about the size of the squares.
The combination of quantum coherence and electron
spin rotation in mesoscopic systems produces a number of
interesting transport properties. Numerous proposals for
potentially revolutionary electronic devices that use spin-
orbit (SO) coupling have appeared in recent years,
including gate-controlled spin rotators [1] as well as
sources and detectors of spin-polarized currents [2]. It
has also been predicted that the effects of some types of
SO coupling will be strongly suppressed in small 0D
systems, i.e., quantum dots [3–5].

In this Letter, we investigate SO effects in ballistic-
chaotic GaAs/AlGaAs quantum dots. We identify the
signature of SO coupling in ballistic quantum dots to be
antilocalization (AL), leading to characteristic magneto-
conductance curves, analogous to known cases of disor-
dered 1D and 2D systems [6–11]. AL is found to be
prominent in large dots and suppressed in smaller dots,
as anticipated theoretically [3–5]. Results are generally in
excellent agreement with a new random matrix theory
(RMT) that includes SO and Zeeman coupling [5].
Moderate magnetic fields applied in the plane of the 2D
electron gas (2DEG) in which the dots are formed cause a
crossover from AL to weak localization (WL). This can
be understood as a result of Zeeman splitting, consistent
with RMT [5]. At larger parallel fields WL is also sup-
pressed, which is not expected within RMT. The suppres-
sion of WL is explained by orbital coupling of the parallel
field, which breaks time-reversal symmetry [12]. Finally,
we demonstrate in situ electrostatic control of the
SO coupling by tuning from AL to WL in a dot with a
center gate.

In mesoscopic conductors, coherent backscattering of
time-reversed electron trajectories leads to a conductance
minimum (WL) at B � 0 in the spin-invariant case, and a
conductance maximum (AL) in the case of strong SO
coupling [6]. In semiconductor heterostructures, SO cou-
pling results mainly from electric fields [13] (appearing
0031-9007=02=89(27)=276803(4)$20.00
inversion asymmetry (Dresselhaus term [14]) and hetero-
interface asymmetry (Rashba term [15]).

SO coupling effects have been previously measured
using AL in GaAs 2DEGs [8–10] and other 2D hetero-
structures [11]. Other means of measuring SO coupling
in heterostructures, such as from Shubnikov–de Haas
oscillations [16] and Raman scattering [17] are also
quite developed. SO effects have also been reported in
 2002 The American Physical Society 276803-1



TABLE I. Dot area A � L1L2 (130 nm edge depletion); spin-
degenerate mean level spacing � � 2� 
h2=m�A (m� �
0:067me); dwell time �d � h=�N��; Thouless energy ET �

hvF=

����
A

p
; 	so?=� and 	so

k
=� for the fits in Fig. 1; B2 coefficients

a1 and a2 from one and two parameter fits; B6 coefficient b2

from two parameter fit; see text.

A � �d a1, a2 b2

�m2 �eV ns ET=� 	so?=� 	so
k
=� �ns��1T�2 �ns��1T�6

1.2 6.0 0.35 33 0.15 0.04 6.6, 6.6 0.24
5.8 1.2 1.7 73 0.32 0.33 3.2, 0 140
8 0.9 2.3 86 3.6 3.1 1.4, 0.9 3.7

VOLUME 89, NUMBER 27 P H Y S I C A L R E V I E W L E T T E R S 30 DECEMBER 2002
mesoscopic systems such as Aharonov-Bohm rings,
wires, and carbon nanotubes [18]. Recently, parallel field
effects of SO coupling in quantum dots were measured
[19,20]. The observed reduction of conductance fluctua-
tions in a parallel field [20] was explained in terms of SO
effects [4,5], leading to an extension of RMT to include
new symmetry classes associated with SO and Zeeman
coupling [5].

This RMT addresses quantum dots coupled to two
reservoirs via N total conducting channels, with N � 1.
It assumes ��; 	Z� 	 ET , where � � N�=�2�� is the level
broadening due to escape, � is the mean level spacing,
	Z � g
BB is the Zeeman energy, and ET is the Thouless
energy (Table I). Decoherence is included as a fictitious
voltage probe [5,21] with dimensionless dephasing rate
N’ � h=���’�, where �’ is the phase coherence time. SO
lengths �1;2 along respective principal axes 
110� and

1
110� are assumed (within the RMT) to be large com-
pared to the dot dimensions L1;2 along these axes. We
define the mean SO length �so �

��������������
j�1�2j

p
and SO anisot-

ropy �so �
����������������
j�1=�2j

p
. SO coupling introduces two energy

scales: 	so? � �?ET�L1L2=�
2
so�

2, representing a spin-
dependent Aharonov-Bohm-like effect, and 	so

k
�


�L1=�1�
2 � �L2=�2�

2�	so? , providing spin flips. AL
appears in the regime of strong SO coupling,
�	so? ; 	

so
k
� � ~��, where ~�� � ��� 
h=�’� is the total level

broadening. Note that large dots reach the strong SO
regime at relatively weaker SO coupling than small
dots. Parameters �so, �’, and �? (a factor related
to trajectory areas) are extracted from fits to dot con-
ductance as a function of perpendicular field, B?. The
asymmetry parameter, �so, is estimated from the depen-
dence of magnetoconductance on parallel field, Bk.

The quantum dots are formed by lateral Cr-Au deple-
tion gates defined by electron-beam lithography on the
surface of a GaAs/AlGaAs heterostructure grown in
the [001] direction. The 2DEG interface is 349 �A below
the wafer surface, comprising a 50 �A GaAs cap layer and
a 299 �A AlGaAs layer with two Si �-doping layers 143
and 161 �A from the 2DEG. An electron density of n�
5:8� 1015 m�2 [22] and bulk mobility 
� 24m2=Vs
(cooled in the dark) gives a transport mean free path ‘e �
3�m. This 2DEG is known to show AL in 2D [10].
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Measurements were made in a 3He cryostat at 0:3K using
current bias of 1 nA at 338Hz. Shape-distorting gates
were used to obtain ensembles of statistically independent
conductance measurements [23] while the point contacts
were actively held at one fully transmitting mode
each (N � 2).

Figure 1 shows average conductance hgi, and variance
of conductance fluctuations, var�g�, as a function of B?

for the three measured dots: a large dot (8�m2), a vari-
able size dot with an internal gate (5:8�m2 or 8�m2,
depending on center gate voltage), and a smaller dot
(1:2�m2). Each data point represents �200 independent
device shapes. The large dot shows AL while the small
and gated dots show WL. Estimates for �so, �’, and �?,
from RMT fits are listed for each device below the micro-
graphs in Fig. 1 (see Table I for corresponding 	? and 	k).
When AL is present (i.e., for the large dot), estimates for
�so have small uncertainties ( � 5%) and give upper and
lower bounds; when AL is absent (i.e., for the small and
gated dots) only a lower bound for �so ( � 5%) can be
extracted from fits. The value �so � 4:4�m is consistent
with all dots and in good agreement with AL measure-
ments made on an unpatterned 2DEG sample from the
same wafer [10].

Comparing Figs. 1(a) and 1(c), and recalling that all
dots are fabricated on the same wafer, one sees that AL is
suppressed in smaller dots, even though �so is sufficient to
produce AL in the larger dot. We note that these dots do
not strongly satisfy the inequalities L=�so 	 1; N � 1,
having N � 2 and L=�so � 0:64 �0:34� for the large
(small) dot. Nevertheless, Fig. 1 shows the very good
agreement between experiment and the new RMT.

We next consider the influence of Bk on hgi. In order to
apply tesla-scale Bk while maintaining subgauss control
of B?, we mount the sample with the 2DEG aligned to the
axis of the primary solenoid (accurate to �1�) and use an
independent split-coil magnet attached to the cryostat to
provide B? as well as to compensate for sample misalign-
ment [20]. Figure 2 shows shape-averaged magnetocon-
ductance (relative to B? � �0=A, i.e., fully broken
time-reversal symmetry), �g�B?; Bk� � hg�B?; Bk�i �
hg�B? � �0=A; Bk�i as a function of B? at several values
of Bk, along with fits of RMT [5] with parameters �so, �’,
and �? set by a single fit to the Bk � 0 data. The low-field
dependence of �g�0; Bk� on Bk [Fig. 2(b)] allows the
remaining parameter, �so, to be estimated as described
below.

Besides Zeeman energy 	Z (calculated using g �
�0:44 rather than fit), parallel field combined with
SO coupling introduces an additional new energy scale,
	Z? � 
��z	2ZA�=�2ET��

P
i;j�1;2

li
�i

lj
�j

, where �Z is a dot-
dependent constant and l1;2 are the components of a unit
vector along Bk [5]. Because orbital effects of Bk on
�g�B?; Bk� dominate at large Bk, 	Z? must instead be
estimated from RMT fits of var�g� with already broken
time-reversal symmetry, which is unaffected by orbital
coupling [24].
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FIG. 2. (a) Difference of average conductance from its value
at large B?, �g�B?; Bk�, as a function of B? for several Bk for
the 8:0�m2 dot at T � 0:3K (squares) with RMT fits (curves).
(b) Sensitivity of �g�0; Bk� to �so for the 8:0�m2 dot, 1 �
�so � 2 (shaded), �so � 1:4 (solid line), and �so � 0:8 (dashed
line). (c) �g�0; Bk� (markers) with RMT predictions (dashed
curves) and one parameter (solid curves) or two parameter fits
(dotted curves) using RMT including a suppression factor due
to orbital coupling of Bk; see text.
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The RMT formulation [5] is invariant under �so !
r=�so, where r � L1=L2 [25], and gives an extremal value
of �g�0; Bk� at �so �

���
r

p
. As a consequence, fits to

�g�0; Bk� cannot distinguish between �so and r=�so. As
shown in Fig. 2(b), data for the 8 �m2 dot (r� 2) are
consistent with 1 � �so � 2 and appear best fit to the
extremal value, �so � 1:4. Values of �so that differ from
one indicate that both Rashba and Dresselhaus terms are
significant, which is consistent with 2D data taken on the
same material [10].

Using �so � 1:4 and values of �so, �’, and �? from the
Bk � 0 fit, RMT predictions for �g�B?; Bk� agree well
with experiment up to about Bk � 0:2T [Fig. 2(a)], show-
ing a crossover from AL to WL. For higher parallel fields,
however, experimental �g’s are suppressed relative to
RMT predictions. By Bk � 2T, WL has vanished in all
dots [Fig. 2(c)] while RMT predicts significant remaining
WL at large Bk.

One would expect WL/AL to vanish once orbital
effects of Bk break time-reversal symmetry. Following
276803-3
Ref. [12] (FJ), we account for this with a suppression
factor fFJ�Bk� � �1� ��1

Bk =�
�1
esc�

�1, where ��1
Bk � aB2

k
�

bB6
k
, and assume that the combined effects of SO cou-

pling and flux threading byBk can be written as a product,
�g�0; Bk� � �gRMT�0; Bk�fFJ�Bk�. The B2

k
term reflects

surface roughness or dopant inhomogeneities; the B6
k

term reflects the asymmetry of the quantum well. We
either treat a as a single fit parameter (a1, Table I), using
b � 1:4� 108 s�1 T�6 from device simulations [26], or
treat both a and b as fit parameters (a2 and b2, Table I).
Fitting both parameters only improves the fit for the
(unusually shaped) center-gated dot.

Increased temperature reduces the overall magnitude
of �g and also suppresses AL compared to WL, causing
AL at 300mK to become WL by 1:5K in the 8�m2 dot
[Fig. 3(a)]. Fits of RMT to �g�B?; 0� yield �so values that
are roughly independent of temperature [Fig. 3(b)],
consistent with 2D results [9], and �’ values that decrease
with increasing temperature. Dephasing is well de-
scribed by the empirical form ��’
ns���1 � 7:5T
K� �
2:5 �T
K��2, consistent with previous measurements in
low-SO dots [27]. As dephasing increases, long trajecto-
ries that allow large amounts of spin rotations are cut off,
diminishing the AL feature.

Finally, we demonstrate in situ control of the SO
coupling using a center-gated dot. Figure 4 shows the
observed crossover from AL to WL as the gate-voltage
Vg is tuned from �0:2V to �1V. At Vg � �1V, the
region beneath the center gate is fully depleted, giving a
276803-3



0.02

0.01

0 

-0.01

-0.02

 

〈 g
(B

⊥
, 0

) 
- 

g(
0,

 0
) 

〉 
 (

e2
/h

)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
B⊥ (mT)

 

 

 

 

 

 

-1 -0.5 0.5   1B⊥ (mT)

+200 mV 

+0 mV 

-100 mV 

-250 mV 

-300 mV 
-1000 mV 

4.7
4.5
4.3

λ
so  (µm

)

-0.2 0.0 0.2
Vg (mV)

1.5

1.0

0.5

κ |
|

λsoκ||

FIG. 4. Difference of average conductance hgi from its value
at B? � 0 as a function of B? for various center gate voltages
Vg in the center-gated dot (squares), along with fits to RMT [5].
Good fits are obtained though the theory assumes homogene-
ous SO coupling. Error bars are the size of the squares. Inset:
�so and �k as a function of Vg extracted from RMT fits; see text.

VOLUME 89, NUMBER 27 P H Y S I C A L R E V I E W L E T T E R S 30 DECEMBER 2002
dot with area 5:8�m2 that shows WL. In the range of
Vg � �0:3 V, the amount of AL is controlled by modify-
ing the density under the gate. For Vg > 0V the AL peak
is larger than in the ungated 8�m2 dot. We interpret this
enhancement not as a removal of the SO suppression due
to an inhomogeneous SO coupling [28], which would
enhance AL in dots with L=�so 	 1 (not the case
for the 8�m2 dot), but rather as the result of increased
SO coupling in the higher-density region under the gate
when Vg > 0V.

One may wish to use the evolution of WL/AL as a
function of Vg to extract SO parameters for the region
under the gate. To do so, the dependence may be ascribed
to either a gate-dependent �so or to a gate-dependence of
a new parameter �k � 	so

k
=f
�L1=�1�

2 � �L2=�2�
2�	so?g.

Both options give equally good agreement with the data
[fits in Fig. 4 assume �so�Vg�], including the parallel field
dependence (not shown). Resulting values for �so or �k

(assuming the other fixed) are shown in the inset in Fig. 4.
We note that the 2D samples from the same wafer did
not show gate-voltage dependent SO parameters [10].
However, in the 2D case a cubic Dresselhaus term that
is not included in the RMT of Ref. [5] was significant. For
this reason, fits using [5] might show �so�Vg� though
the 2D case did not. Further investigation of the gate
dependence of SO coupling in dots will be the subject
of future work.
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