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Kondo State for a Compact Cr Trimer on a Metallic Surface
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The ground state of a Cr trimer supported on the Au(111) surface is investigated by means of a
variational approach to the Coqblin-Schrieffer Hamiltonian. The temperature of Kondo-resonance
formation (TK) for equilateral trimers increases drastically as compared to TK for a single Cr adatom.
The Kondo state of a Cr trimer proves to be very sensitive to geometry and a small shift of any atom
from the symmetrical position leads to a rapid decrease in TK. These results are in good agreement with
recent observations of the Kondo response of a single antiferromagnetic chromium trimer [T. Jamneala
et al., Phys. Rev. Lett. 87, 256804 (2001)].
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low temperature [8]. However, Cr trimers on Au(111) do
not follow such a rule [6]. Since distances between ada-

will demonstrate that (i) for symmetric Cr trimers the
Kondo temperature can be hundreds of times higher than
The development of scanning tunneling spectroscopy
and the ability to build clusters with well-controlled
interatomic distances on metal surfaces has revived in-
terest in phenomena associated with the Kondo effect in
dilute alloys [1–3]. Probing the Kondo resonance on
individual atoms [4] or very small clusters [5,6] with
scanning tunneling microscopy (STM) allows the study
of magnetism at a scale that cannot be achieved by other
methods. Although the physics of Kondo systems was
investigated and understood in detail, decades ago, new
Kondo phenomena observed in the clusters on the metal
substrate contain puzzles which have no explanation thus
far. For one isolated magnetic impurity, the experimen-
tally observed width and shift of the Kondo resonance are
in accordance with calculations obtained from a combi-
nation of band structure and strongly correlated tech-
niques [7], but for magnetic dimers and trimers the
situation has proven to be more complicated [5,6].

Astonishing results were obtained very recently for Cr
trimers on a gold surface [6]. The STM spectrum for a
single Cr atom was observed not to contain a Kondo peak,
implying that the Kondo temperature for Cr monomers is
significantly less than the experimental temperature (7 K).
When two Cr atoms are joined to form a dimer, inter-
action between their magnetic moments is expected only
to suppress the Kondo effect, and indeed no Kondo sig-
nature was experimentally observed for these Cr dimers.
Similarly, artificially fabricated cobalt dimers on Au(111)
show an abrupt disappearance of the Kondo resonance for
Co-Co separation less than 6 �A [5]. For trimers, one
might expect that additional interactions between mo-
ments would only hinder the screening of the moments
and transition to the Kondo state. In the dilute bulk CoAu
alloys, for example, isolated Co atoms and dimers showed
Kondo behavior (with the Kondo temperature for dimers 9
times smaller than that of isolated Co atoms), whereas
groups of three or more atoms stayed magnetic at very
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toms in the experimentally fabricated trimers were very
small (less than 5 �A), the individual positions of the
adatoms could not be clearly distinguished by STM.
Nevertheless, compact triangular Cr trimers exhibited
two distinct classes of behavior. In the first state, they
displayed a featureless STM spectrum, whereas in the
second state they displayed a narrow resonance at the
Fermi level corresponding to a Kondo temperature TK �
50 K. This value greatly exceeds TK for single Cr impu-
rities on the surface, which is definitively below 6 K.
Trimers were reversibly transferred from one state to
the other by very small shifts of one atom via tip ma-
nipulation. It is natural to assume that the two observed
states correspond to equilateral and isosceles trimer con-
figurations. In the equilateral configuration, Cr atoms
should occupy nearest neighbor sites on the Au(111) lat-
tice (Cr-Cr distance is 2:9 �A). In the most likely isosceles
configuration, two Cr atoms stay in the nearest neighbor
positions while one atom is shifted to a distance of 4:4 �A
(see the inset of Fig. 2) from either of its neighbors.

The ground state of a Cr trimer is noncollinear due to
magnetic frustrations [9,10]. Small variations in hopping
parameters have been predicted to lead to strong changes
in magnetic moment orientation for constituent atoms
and therefore of the total magnetic moment of a trimer.
This is expected to influence low-temperature behavior
but hardly can explain the (at least) order of magnitude
increase of TK for Cr trimers as compared to single
adatoms.

In this Letter, we present a variational theory devel-
oped for the description of small supported clusters. This
theory allows us to take into account superpositions of
states in which some atoms of the cluster form Kondo
singlets, whereas others conserve their magnetic mo-
ments. The transition of some atoms into the singlet state
removes magnetic frustration in the clusters and compen-
sates for the loss of Heisenberg-like magnetic energy. We
 2002 The American Physical Society 276802-1
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for Cr monomers and (ii) the transition from a symmetric
(equilateral) to an isosceles trimer configuration leads to
a rapid decrease of TK.

To take into account the interaction of localized d
states of Cr adatoms with bulk conduction electrons of
the substrates, we use the Coqblin-Schrieffer Hamil-
tonian for few impurities [11]:
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Here, dyj
�dj
� and cyk
�ck
� are the creation (annihila-
tion) operators for the localized 3d state on the jth adatom
with spin 
 and for the conduction electron with wave
number k and energy "k, Rj is the radius vector of the jth
adatom, and L is the number of lattice sites. The Cr
adatoms are described as a doubly degenerate 3d level.
We discuss the validity of this assumption below.
The function �kk0 can be expressed as �kk0 �
�Y


20�
k�Y20�
k0 �, where Ylm are the spherical harmonics
(for the sake of simplicity, we assume the projection
of the Cr orbital moment on the normal to the surface
to be zero).

To include interaction between the magnetic moments
Sj in the trimer, we supplement a Hamiltonian (1) with
the Heisenberg term. This procedure accounts for direct
interatomic exchange as well as RKKY interaction via the
conductivity band [11,12]. The total Hamiltonian then
takes the form

H � HCS �HH; (2)

where

HH �
X
hiji

�ijSiSj: (3)

In compact Cr trimers, the value of parameter �ij is
determined mainly by the direct antiferromagnetic (AF)
exchange. Ab initio calculations [10,13] of small free-
standing Cr clusters demonstrate that this interaction
has an order of eV, whereas estimation of RKKY coupling
energy gives values less than a millivolt [5].

We start by investigating this model (2) for a compact
symmetric trimer. In this case, all �ij in (3) are equal:
�ij � �. Let us create a set of Yosida trial wave functions
[14]

bPPjj0i � X
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where the initial wave function is formed by the unper-
turbed Fermi sea and a paramagnetic (equiprobable) state
of three localized spins j0i � �1=
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. Parameters �k are real numbers
(
P

k �
2
k � 1), which must be determined via a variational

procedure. The operator bPPj adds to the system an addi-
tional conduction electron bonded to the localized spin,
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so that bPPjj0i represents the singlet Kondo state on site j.
These operators generate a subspace of trial wave func-
tions bPP1j
1
2
3i � jb1
2
3i, bPP2j
1
2
3i � j
1b2
3i,
and bPP3j
1
2
3i � j
1
2b3i.

In the same manner, we create a subspace of states
with two (e.g., bPP1

bPP2j
1
2
3i � jb1b2
3i) and three
(jb1b2b3i) Kondo singlets. The last one is the ground state
of the trimer in the limit of large distances between
adatoms. Note that Hamiltonian (2) does not mix the
different subspaces.

We consider below the subspace with only one Kondo
singlet to construct the ground state of a compact trimer.
The states with two and three singlets have no contribu-
tion from the Heisenberg term (3), and thus for suffi-
ciently large � they have higher total energy. Therefore
they can be neglected. The two unscreened spins may
form either three triplet or one singlet states. We omit
the triplets since in the case of AF exchange (� > 0) they
have much higher energy. As a result, the following three
singlet states remain:
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1���
2
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1���
2

p �j " b2 #i � j # b2 "i�;
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1���
2

p �j "# b3i � j #" b3i�:

(5)

In the subspace of these vectors, the Hamiltonian (3)
gives a constant contribution to the total energy EH �
�3�=4. Note that exactly the same energy EH corre-
sponds to the ground state with three unscreened spins
due to magnetic frustrations in the equilateral trimer.

We assume the Fermi sea to be isotropic. Then the
interaction between adatoms does not depend on the
direction Rij in the surface plane. The Hamiltonian (1)
has the general matrix form

HCS �

0
@ A B �B
B A B
�B B A

1
A (6)

in the representation (5). The diagonal elements corre-
spond to the Kondo singlet localized on each atom of the
trimer whereas the nondiagonal terms describe transi-
tions of the Kondo state from one adatom to another.
The eigenvectors of the matrix (6) are

j1i �
1���
3

p �jb1i � jb2i � jb3i�;

j2i �
1���
2

p ��jb1i � jb3i�;

j3i �
1���
2

p �jb1i � jb2i�:

(7)

The eigenvalues of the second and third vectors are
degenerate. A graphic representation of state j1i is shown
in Fig. 1. The Schrödinger equation for this state takes the
form
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FIG. 1. Representation of the ground state of a compact
trimer. The black circles are Kondo singlets while double lines
denote the singlet states of two localized spins.

FIG. 2. The Kondo energy of the isosceles trimer vs �. The
arrow shows the point where EK � �6 K. The insets show a
symmetric trimer (on the left, � � 0) and an isosceles trimer
(on the right). The black circles are the Cr adatoms placed on
the closed-packed surface background (dashed circles).
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where �k � �kY20�
k�, R is a vector in the surface plane,
and jRj is the distance between adatoms in the trimer.

Then we pass from a summation to an integration over
spherical coordinates in Eq. (8):
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where kF and kD are the Fermi vector and the cutoff
vector, respectively. Expanding the plane wave
exp�ik0R� into the spherical harmonics, we separate the
integration over the radial and angular variables. To esti-
mate the integral, we retain the first term of the series.
Finally, the eigenvalue corresponding to the state is

E1 � �"0 exp
�
�

s
1� 2t

�
; (10)

where "0 � 4"F�kD � kF�=�kD � kF�, s � 2=�3�&�"F��,
"F is the Fermi energy, &�"F� is the density of states
(DOS) at the Fermi level, and t � sin�RkF�=�RkF�. It is
convenient to calculate the energy from the ground state
level of the Hamiltonian (3). Then Eq. (10) gives the true
energy of the state. In the same manner, we obtain the
eigenvalue corresponding to the vector j2i (j3i)

E2�3� � �"0 exp
�
�

s
1� t

�
: (11)

The energy of the Kondo singlet of a monomer can be
obtained from Eq. (10) or Eq. (11) if t � 0. Depending on
the sign of sin�kFR�, states j1i or j2i (j3i) become the
ground one. Note that for all t � 0 the ground state energy
for the trimer proves to be lower than for a single adatom.
For small distances R (i.e., for the compact trimer) t > 0
and the state j1i determines the Kondo temperature.
Similar solutions can be obtained for a dimer [12] but
in this case the loss of the Heisenberg energy suppresses
the transition to the Kondo state.

Let us consider an isosceles trimer. Shifting the second
adatom off the symmetric position (see the inset of Fig. 2)
leads to nonequal distances between adatoms and there-
fore to distinct exchange constants �ij (�12 � �23 � �l,
�23 � �s, �l <�s). Since the exchange interaction in a
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Cr-Cr pair strongly depends on separation, we assume
that, for small shifts, sin�kFR�=�kFR� can be considered to
be constant and only the variation of the exchange
constant �ij is responsible for modifying the trimer’s
behavior. We look for the ground state of an isosceles
trimer in the form

jGi �
1���������������������

2)2 � *2
p �)jb1i � *jb2i � )jb3i�; (12)

where the coefficients ) and * depend on the inter-
atomic distances. For the equilateral compact trimer
[sin�kFR� > 0] ) � * � 1, whereas when R12 � R23 �
R13, ) � 0 and * � 1. Since the positions of atoms 2 and
1 (3) are nonequivalent, the coefficients �k in the expres-
sion for the operator bPPi depend on the position of adatom
j in the isosceles trimer (�1k � �3k � �)k, �2k � �*k,
�)k � �*k). The energy associated with the Heisenberg
term (3) in the ground state,EH � �3�s=4, is included in
the zero energy level, as above. The Schrödinger equation
for the state jGi is then separated into two equations for
the coefficients )�)k and *�*k:

�"k � �� E�)�)k
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0R)�)k0 �: (13)

where � � 3
4 ��s ��l� > 0. After replacement of the

summation by an integration, the system of equations in
(13) can be reduced to

E � �"0 exp
�
�
s�1� tx�

1� t� 2t2

�
��;

E � �"0 exp
�
�
s�tx� x� 2t�

x�1� t� 2t2�

�
:

(14)

Here "0 and t are the same as in Eq. (10) and x �
*�"F � E�=��"F � �� E�)�. This system of equations
can be easily solved numerically with respect to the
unknown variables E and x.
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We can now make an estimation of the ground state
energy, which determines the temperature of transition to
the Kondo state. First, we assume the values of parame-
ters for bulk Au "0 � "F � 64 000 K, kF � 108 cm�1 [7],
which yield t � 0:08. The value of parameter s is chosen
to ensure that the Kondo temperature for a single Cr
adatom is below the experimental temperature (7 K),
since no Kondo resonance was detected for Cr monomers
in experiment [6]. A simple estimate using Eq. (10) shows
that the Kondo temperature decreases from 2.9 to 0.1 K
when s is increased from 10 to 13. The nondiagonal terms
of (6) cause enlargement of the Kondo energy in
the trimer. However, even if we choose TK � 2:9 K
(s � 10) for a single adatom, we obtain only TK �
12:1 K for the trimer. This value is still much lower
than the experimental one for a trimer (� 50 K) [6].
Therefore, for a quantitative explanation of the experi-
ment, we must include the dispersion of itinerant surface
states of the metal substrate.

It is well known that delocalized 2D surface states exist
on the close-packed faces of the noble metals due to the
gap along the �-L direction in the bulk metal [e.g., the
Au(111) surface [15]]. STM techniques have provided a
direct observation of perturbations in these surface states
caused by adatoms. Therefore it is natural to assume that
the interaction of the atomic states and the 2D surface
states has some influence on the magnetic behavior of a
cluster. The Fermi vector for these electrons proves to be
essentially smaller than for bulk ones and therefore we
can wait that the value t in (10) will be close to 1 for
typical distances in the compact trimer. It has to increase
the Kondo temperature. To confirm this quantitatively we
apply the same model for itinerant 2D electrons that we
did for bulklike electrons. Then in the Hamiltonian (1)
the interaction constant should be replaced by �kk0 �
� exp�im�’k0 � ’k��, where m is the projection of the
orbital moment on a z axis perpendicular to the surface;
’k0 and ’k are the angles in cylindrical coordinates. In
Eqs. (8) and (13), we transfer from a summation to an
integration. After calculations performed exactly in the
same way as above, we obtain Eqs. (10), (11), and (14),
except that preexponential factor "0 and the function t are
replaced, respectively, by "0 � "D � "F and t � J0�kFR�,
where J0 is the zeroth order Bessel function.

The dispersion law for surface state electrons can be
estimated from the experimental data [15]: At 4 K, the
Au(111) surface state dispersion is parabolic, with an
effective mass ratio 0.26 and a band edge 0.52 eV below
the Fermi energy. It gives "0 � "F � 6000 K and kF �
2	 107 cm�1 (t � 0:92). Using s � 11, we obtain TK �
0:1 K for a single adatom. The Kondo energy for a sym-
metric trimer then proves to be 125 K. The increase of the
Kondo energy for the trimer with respect to the monomer
is 3 orders of magnitude. It is worth emphasizing again
that the drastic enhancement of the Kondo state energy
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stems from the fact that, for surface states (in contrast to
the bulk states), the natural unit length k�1

F is of the same
order as interatomic distances in trimer.

Let us consider now the situation for an isosceles Cr
trimer. The temperature of transition to the Kondo state
can be obtained from the solution of the equations in (14).
The dependence E��� for the surface electrons is shown
in Fig. 2. It is clear that a small difference between �l and
�s (� are of the order of 1 eV, i.e., 104 K) causes a strong
suppression of the Kondo temperature. This explains the
high sensitivity of the Kondo temperature to trimer
geometry which was found in STM experiments [6].

The model discussed above is based on the assumption
that a Cr adatom can be treated as a doubly degenerate
state. In fact, a free Cr atom has a half-filled 3d shell with
the total spin S � 5=2 and the orbital moment L � 0. The
degeneracy of free 3d levels is partially lifted by the
Au(111) cleavage. The interaction of an adatom with two
other adatoms in a trimer acts as a crystal field with a low
symmetry and totally lifts the orbital degeneracy. Thus,
the model presented above can be appropriately general-
ized to multielectron shells.

In summary, we have developed a variational theory
for the description of the Kondo resonance in small
supported clusters. The Kondo temperature for an equi-
lateral Cr trimer was found to be always higher than for a
single Cr adatom. For compact trimers this difference can
be quite large. The Kondo state also proved to be very
sensitive to trimer geometry and can be suppressed by a
transition from an equilateral to an isosceles shape.
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