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Polarization of Superfluid Turbulence
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We show that normal-fluid eddies in turbulent helium II polarize the tangle of quantized vortex lines
present in the flow, thus inducing superfluid vorticity patterns similar to the driving normal-fluid eddies.
We also show that the polarization is effective over the entire inertial range. The results help explain the
surprising analogies between classical and superfluid turbulence which have been observed recently.
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rectly as bursts [9] and indirectly via Kelvin wave radia-
tion [10]). There is also some numerical evidence from

tively. In a turbulent normal flow, however, the shear
does not last longer than the few times the turnover
Our concern is the experimental evidence that turbu-
lent helium II appears similar to classical turbulence [1].
For example, the temporal decay of helium II turbulence
behind a towed grid is the same as that expected in an
ordinary fluid [2]. Furthermore, if helium II is agitated
by rotating propellers, the energy spectrum obeys the
same classical Kolmogorov k�5=3 dependence on the
wave number k [3]. It was also found that if helium II is
forced at high velocity along pipes and channels the same
pressure drops [4] are detected which are observed in a
classical liquid. Furthermore, when a sphere moves at
high velocity in helium II, the same drag crisis [5] is
measured that occurs if the fluid is air.

These apparently classical results are surprising be-
cause helium II is a quantum fluid. According to
Landau’s two-fluid theory, it consists of the intimate
mixture of an inviscid superfluid component and a viscous
normal-fluid component. The latter is similar to a classi-
cal Navier-Stokes fluid, so, when made turbulent, it con-
sists of eddies of various sizes and strengths. On the
contrary, quantum mechanics constrains the rotational
flow of the superfluid to quantized vortex lines, each
vortex with the same quantum of circulation � � 9:97�
10�4 cm2=sec. Unlike what happens in a classical Euler
fluid, superfluid vortex lines can reconnect with each
other [6]. They also interact with the normal fluid via a
linear mutual friction force [7], and, when helium II is
made turbulent, they form a disordered, apparently ran-
dom tangle. Clearly the experimental results described
above call for an explanation in terms of the basic physi-
cal ingredients of the problem (normal-fluid eddies and
superfluid vortices) and their interaction. What is remark-
able is that these classical aspects of helium II turbulence
are observed to be independent of temperature, whereas
the relative proportion of superfluid and normal fluid is a
strong function of temperature.

Years ago it was suggested [8] that vortex reconnec-
tions create an effective eddy viscosity which should
make the superfluid similar to the normal fluid. It has
been shown recently that vortex reconnections turn part
of the superfluid’s kinetic energy into sound energy (di-
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two different methods [11,12] that the superfluid energy
spectrum obeys the k�5=3 law over a short range, although
better numerical resolution is needed to determine this
power law under more realistic flow conditions. If
both normal fluid and superfluid in isolation obey Kol-
mogorov’s law, the key question is what happens when we
take into account the mutual friction coupling the two
fluids together.

Vinen [13] argued that at spatial scales larger than the
average separation � between the quantized vortex lines,
the superfluid and normal fluid should be coupled by a
small degree of polarization of the almost random tangle
of superfluid vortex lines. The polarization should corre-
late the superfluid and normal-fluid velocity fields. If that
is the case, on these scales helium II behaves as a single
fluid of density � � �s � �n, consistently with the ex-
periments (�s and �n are the superfluid and normal-fluid
density, respectively).

The aim of this Letter is to support Vinen’s argument
with quantitative evidence of polarization. First, we shall
introduce some simple models which, although very
idealized, capture the essential physics of polarization.
Second, we shall look for evidence of polarization by
direct numerical simulation.

Our first model is concerned with the reaction of super-
fluid vortices to a normal-fluid shear. Consider a row of
point vortices of alternating circulation �� initially set
along the x axis at distance � from each other. We assume
that the normal fluid is vn � Vn cos�ky�x̂x. The governing
equation of motion of a vortex point is [14]

dy
dt

� �Vn cos�ky�; (1)

where  is a known temperature dependent friction co-
efficient [7]. The solution of Eq. (1) corresponding to the
initial condition y�0� � 0 is

y�t� �
2

k

�
�
�
4
� tan�1�e�kVnt�

�
: (2)

Given enough time (t! 1), positive and negative vor-
tices will reach stable locations y1 � ��=2k, respec-
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time � 
 1=!n 
 1=kVn. Since  is small (it ranges from
0:037 at T � 1:3 K to 0:35 at T � 2:16 K), we have
y��� 
 �b where b � =k. Within the lifetime of the
shear we have thus created a separation 2b between
positive and negative vortices; that is to say, we have
polarized the initial configuration. The velocity of this
Karman-vortex street is approximately [15] Vs 
 ��=2�
for k�� 1 in the direction along the x axis where the
normal fluid (which induced the polarization in the first
place) is stronger. The result suggests that it is not neces-
sary to create extra vortex lines to generate a superfluid
pattern that mimics the normal-fluid one —rearranging
existing vortices is enough. We also notice that the in-
duced polarization is proportional to .

Our second model is concerned with the expansion of
favorably oriented superfluid vorticity. We think of the
superfluid vortex tangle as a collection of vortex rings of
radius approximately equal to the average separation of
vortices in the tangle, R0 
 �. We assume for simplicity
that the rings are on the x; y plane with equal numbers of
rings oriented in the �z directions. Depending on
whether they have positive or negative orientation, the
rings move along �z with self-induced speed given by

VR0
�

�L

4�R0
; (3)

where L � ln�8R0=a0� � 1=2 is a slowly varying term
and a0 
 10�8 cm is the vortex core radius. Now we apply
a normal-fluid velocity Vn in the z direction. The radius R
of a ring is determined by [7]

dR
dt

�
�
�s�

�Vn � VR�; (4)

where � is a known friction coefficient and �=�s� 
  at
almost all temperatures of interest. Equation (4) shows
that Vn selectively changes radius and velocity of vortex
rings moving in opposite directions. A ring which grows
(shrinks) by an amount �R � �t�Vn � VR0

� in time �t
slows down (speeds up) by an amount �VR � VR0

�R=R0.
In this way a superflow is induced in the same direction of
the normal fluid which induced the polarization in the
first place. A simple estimate of the spatial averaged
magnitude of this superflow yields [16] Vs 
 3VR0

�R=R0.
Our third model is concerned with the rotation of

existing superfluid vorticity. We represent a superfluid
vortex line as a straight segment pointing away from
the origin and study how its orientation is changed by a
normal-fluid rotation about the z axis. Using spherical
coordinates �r; �;��, we assume that the vortex is ini-
tially in the plane � � �=2. The normal fluid’s velocity is
vn � �0; 0;�r sin��, and the motion of the vortex segment
is determined by [17] d�=dt � ��sin���, dr=dt � 0,
and d�=dt � 0. The solution is ��t� � 2 tan�1�e��t�,
with r and � constant. Given enough time, the vortex
segment will align along the direction of the normal-fluid
rotation (�! 0 for t! 1), but the lifetime � of the eddy
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is only of the order of � 
 1=�, so the vortex can turn
only to the angle ���� 
 �=2� .

Despite the smallness of the angle, the effect is suffi-
cient to create a net polarization of the tangle in the
direction of the normal fluid’s rotation, provided that
there are enough vortices. The following argument shows
how this is possible. The normal fluid is like a classical
viscous Navier-Stokes fluid, and, if left to itself, its
spectrum Ek would obey Kolmogorov’s law

Ek � C�2=3k�5=3: (5)

Equation (5) is valid in the inertial range 1=‘0 < k< 1=!
in which big eddies break up into smaller eddies, trans-
ferring energy to higher and higher wave numbers with-
out viscosity playing a role. Here k is the magnitude of the
three dimensional wave vector, � is the rate of energy
dissipation per unit mass,C is a constant of order unity, ‘0
is the integral length scale (the scale at which energy is
fed into the energy cascade), and ! is the Kolmogorov
scale at which kinetic energy is dissipated by the action of
viscosity. In reality the normal fluid is not alone but is
forced by the quantized vortex filaments. We know little
of the effects of this forcing (it has been studied only for
very simple geometries [18]) so, for lack of further in-
formation, we assume that the classical relation Eq. (5) is
valid for the normal fluid.

The quantity which is often used to describe the in-
tensity of the superfluid vortex tangle is the vortex line
densityL (length � of vortex line per volume V ) because
it is easily measured by detecting the attenuation of
second sound. From L one infers the average separation
between vortices, � 
 L�1=2. The quantity �L can be
interpreted as the total rms vorticity of the superfluid.
Note that the net amount of superfluid vorticity in a
particular direction can be much less than �L (even
zero, if the tangle is randomly oriented).

The key question is whether, as a result of mutual
friction, sufficient quantized vortex lines can reorient
themselves within a normal-fluid eddy of wave number
k so that the resulting net superfluid vorticity matches the
vorticity!k of that eddy. The process must take place in a
time scale shorter than the typical lifetime of the eddy,
which is of the order of a few times the turnover time
1=!k. At this point we use the result of the third model,
for which the initial condition ��0� � �=2 represents the
average case. If the initial orientation of the vortex is
toward the origin rather than away from it, then the
vortex segment turns to ���� 
 �=2�  rather than
�=2�  but still contributes to positive vorticity in the
z direction. Therefore in the time 1=!k, reordering of
existing vortex lines creates a net superfluid vorticity
!s of the order of L�=3 in the direction of the vorticity
!k of the driving normal-fluid eddy of wave number k.
Since !k is approximately !k �

����������
k3Ek

p
, we have !k �

C1=2�1=3k2=3. Matching !s and !k would then require
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FIG. 1. Vortex configuration at t � 0:123 sec for  � 0:5 and
A � 1:0 cm=sec.
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1
3�L � C1=2�1=3k2=3: (6)

The normal-fluid vorticity increases with k and is con-
centrated at the smallest scale (k 
 1=!), so a vortex
tangle with a given value of L may satisfy the above
equation up to only a certain critical wave number kc.
Substituting � � $3n=!4 where $n is the normal fluid’s
kinematic viscosity (the viscosity of helium II divided
by �n), we obtain ��=!� � C�1=4�=3�1=2��=$n�1=2 �
�!kc�

�1=3. If kc 
 1=!, then
�
!
� C�1=4

�

3

�
1=2

�
�

$n

�
1=2
: (7)

In the temperature range of experimental interest �=$n
ranges from 0:43 at T � 1:3 K to 5:86 at T � 2:15 K, so
�=! � O�1� and we conclude that matching of the two
vorticities (kc 
 1=!) is possible throughout the inertial
range.

Because of the computational cost, it is difficult to
compute numerically vortex tangles dense enough to
cover the range k < 1=‘. To make progress in the problem
and confirm the above arguments we study the reaction
of the superfluid vortex tangle to a single scale ABC
normal flow [19] given by vn � A sin�kz� � C cos�ky�;
B sin�kx� � A cos�kz�;C sin�ky� � B cos�kx�� where k �
2�=' is the wave number, ' is the wavelength, and A,
B, and C are parameters. ABC flows are solutions of the
Euler equation and the forced Navier-Stokes equation and
have been used as an idealized model of eddies in fluid
dynamics, magnetohydrodynamics, and superfluid hy-
drodynamics [20]. For the sake of simplicity we take A �
B � C and ' � 1.

We represent a superfluid vortex filament as a space
curve s � s�(; t� where ( is arclength and t is time.
Neglecting a small transverse friction coefficient, the
curve moves with velocity

ds
dt

� vsi � s0 � �vn � vsi�; (8)

where s0 � ds=d( and the self-induced velocity vsi is
given by the Biot-Savart integral

vsi �
�

4�

Z �r� s� � dr
jr� sj3

: (9)

The calculation is performed in a cubic box of volume
V � 1 cm3 with periodic boundary conditions. The nu-
merical technique is standard [21], and the details of our
algorithm, including how to perform vortex reconnec-
tions, have been published elsewhere [20].

We start the calculation with N � 50 superfluid vortex
rings set at random positions and orientation and inte-
grate in time at a variety of temperatures ( � 0:1, 0:5,
and 1:0) and normal fluid’s velocities (A � 0:01, 0:1, 1:0,
and 10:0 cm=sec). The vortex length (� � 76:8 cm at
t � 0) increases or decreases depending on whether the
ABC flow is strong enough to feed energy into the vortices
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via instabilities of vortex waves (for example, for
 � 1:0, the final length � is as high as 781:3 cm at
A � 10:0 cm=sec, and as low as 56:67 cm at A �
0:01 cm=sec). The rings interact with each other and
with the normal fluid, get distorted, reconnect, and
soon an apparently random tangle is formed (see Fig. 1).

The quantity hcos���i � hs0 � !̂!ni, which we monitor
during the evolution, gives us the tangle-averaged projec-
tion of the local tangent to a vortex in the direction of the
local normal-fluid vorticity, !̂!n � �1=!n�!n, where
!n � r� vn. At t � 0 hcos���i � 0 due to the random
nature of the initial state, and it is apparent from Fig. 2
that hcos���i increases with time, no matter whether �
decreases or increases.

The results are analyzed in Fig. 3. From the simple
models described above we expect that the polarization
induced by the normal-fluid vorticity is proportional to .
We also know from the discussion above that we should
restrict the analysis to times t < � where � � 1=!n with
!n �

���
3

p
Ak is the lifetime of the normal-fluid eddy,

which we assume to be the same as the eddy’s turnover
time. It is apparent from the figure that, no matter whether
the tangle grows or decays, approximately the same po-
larization takes place for t=� < 1.

In conclusion, we have put the theory of superfluid
turbulence on firmer ground. Using simple models which
capture the essential physical mechanisms of polarization
and then a numerical simulation, we have shown that,
within the lifetime of a normal-fluid eddy of wave
275301-3
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FIG. 2. Average polarization hcos���i versus time t computed
for different values of A and .
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number k, superfluid vortex lines can rearrange them-
selves so that the superfluid vorticity and the normal-fluid
vorticity are aligned. Provided that enough vortex lines
are present, vorticity matching should take place over
the entire inertial range, up to wave numbers k of the
order of 1=‘.

Our result has theoretical and experimental implica-
tions. Numerical simulations of vortex lines driven by
normal-fluid turbulence [22] show a k�1 superfluid energy
spectrum in the region k � 1=�. More intense (hence
computationally expensive) vortex tangles should be in-
vestigated to explore the region k� 1=� where we pre-
dict the classical k�5=3 dependence observed without
normal fluid [11,12]. Another important issue which
must be investigated is the nonlinear saturation of the
polarization process. On the experimental side, our result
supports the use of helium II to study classical turbulence.
This has been done recently by Skrbek et al. [23] who
exploited the physical properties of liquid helium to study
the decay of vorticity on an unprecedented wide range of
scales.
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FIG. 3. hcos���i= versus scaled time t=� where � is the
eddy’s lifetime (same symbols as in Fig. 1).
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We are indebted to W. F. Vinen who suggested we study
some of the above described models of the interaction
between normal-fluid and quantized vortex lines.
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