VOLUME 89, NUMBER 27

PHYSICAL REVIEW LETTERS

30 DECEMBER 2002

Eliminating Islands in High-Pressure Free-Boundary Stellarator Magnetohydrodynamic
Equilibrium Solutions

S.R. Hudson,' D. A. Monticello,' A. H. Reiman,' A. H. Boozer,” D. J. Strickler,? S. P. Hirshman,? and M. C. Zarnstorff"
'Princeton Plasma Physics Laboratory, PO. Box 451, Princeton, New Jersey 08543
2Columbia University, New York, New York 10027

30ak Ridge National Laboratory, PO. Box 2009, Oak Ridge, Tennessee 37831
(Received 3 June 2002; published 20 December 2002)

Magnetic islands in free-boundary stellarator equilibria are suppressed using a procedure that iterates
the plasma equilibrium equations and, at each iteration, adjusts the coil geometry to cancel resonant
fields produced by the plasma. The coils are constrained to satisfy certain measures of engineering
acceptability and the plasma is constrained to ensure kink stability. As the iterations continue, the coil
geometry and the plasma simultaneously converge to an equilibrium in which the island content is
negligible. The method is applied with success to a candidate plasma and coil design for the National
Compact Stellarator Experiment [Phys. Plasmas 8, 2083 (2001)].
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Introduction.—The magnetic field lines of toroidal
plasma confinement devices, such as stellarators [1], are
1%-dimensiona1 Hamiltonian systems and magnetic flux
surfaces are the analog of constant action surfaces [2].
This may be seen by noting that in arbitrary toroidal co-
ordinates (7, 6, {) any vector, in particular, the magnetic
vector potential, may be written A = V6 — yV{ + Vg,
where ¢, y, and g are functions of (r, 8, ): from which
B = Vi X VO + V{ X Vy. Using the toroidal angle { as
the independent (time) coordinate, and considering y =
x(¥, 0, £), the magnetic field line flow equations may be
recast in a form identical to Hamilton’s equations: d 0 =
8¢,X and d{lp = _69/\/

For magnetohydrodynamic (MHD) equilibrium, the
pressure gradient force must balance the Lorentz force
Vp =J X B, which requires B-Vp =0. In regions
where |Vp| # 0, the field is integrable, B - Vi = 0, and
action-angle coordinates exist y = y(i). In this context,
action-angle coordinates are called magnetic coordinates
and B-Vf = (B - V{)(tdy + d,)f for an arbitrary func-
tion f and ¢ = 9, x is called the rotational transform.

Integrable 1%—dimensional Hamiltonians naturally oc-
cur only in systems with a continuous symmetry, and
stellarators have no continuous symmetry. Integrability
can be studied by perturbing an integrable field B.
Writing B = By + B, and ¢ = ¢y + ¢, the perturbed
system is integrable if By - Vi, + B - Vify = 0. In mag-
netic coordinates, this becomes

B, - v%

Iy | Iy
R R M.
B, V¢

Y90 T ac 1
If this can be nontrivially solved for ¢/;, new magnetic
coordinates exist and the perturbed state preserves inte-
grability; however, the Fourier coefficients of i, are
given by the Fourier coefficients of (BY/ Bé) divided by
(tm — n). At rational rotational-transform surfaces, ¢+ =
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n/m, a singularity exists and the perturbed state is non-
integrable. In the perturbed state, the rational surface
splits to form an island of width [(BY/BS),./t'm]"/2.
Islands and the chaotic field lines caused by island overlap
result in poor plasma confinement.

In an ideal MHD model of plasma perturbations, sin-
gular currents arise at the rational surfaces, both from
o-function currents that arise to guarantee that islands
can neither be created nor destroyed and from singulari-
ties in the Pfirsch-Schliiter currents. The &-function cur-
rents cannot exist in a plasma equilibrium consistent with
finite resistivity, and nonzero (B(f/Bg)mn and, thus, is-
lands may exist. In the presence of islands, the Pfirsch-
Schliiter currents are nonsingular [3]. Numerical codes
that model such equilibria, such as the PIES code [4], must
allow for the magnetic field to have islands. Note that
there is an effect on the island width from the plasma
currents in the island interior and near the separatrix (the
apparent o-function currents as seen by the exterior solu-
tion in a boundary layer analysis [5]), and this effect is
included in the PIES code.

Changes in coil geometry will change (B‘f’/ Bg)mn and
can reduce the magnitude of the islands and their asso-
ciated stochastic regions. It may not be possible to com-
pletely eliminate all islands [6], but all that is required in
practice is that the magnetic islands occupy less than a
tolerable percentage of the plasma volume. Such a mag-
netic field is said to have “good-flux surfaces.”

The construction of vacuum magnetic fields with
good-flux surfaces is not trivial [7], but is simpler than
when a plasma is present. The additional complexity
arises from the modification of (B”lb / Bg)mn by the plasma
currents, and the self-consistent solution requires that the
plasma equilibrium field and the coil field combine to give
a zero resonant component at the rational surfaces. Pre-
vious studies of finite pressure stellarator equilibria with
islands have showed that the width of an island can
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depend on the magnitude of the plasma pressure and even
go to zero, an effect called “self-healing” [8]. A recent
article [9] showed that high-pressure fixed-boundary so-
lutions may be constructed with good-flux surfaces.

Stellarators are designed to optimize both their physics
properties (particle orbits, MHD stability, etc.) and the
engineering of the coils. The optimizations rely on plasma
equilibrium codes, and the fastest such codes presuppose
perfect flux surfaces — the existence or size of magnetic
islands cannot be addressed. The purpose of our study is
to enforce good-flux surfaces by varying the shape of
the coils while preserving the optimized properties of the
plasma and the coils. Stellarator coils must balance the
normal field B, produced by the plasma currents on
the plasma surface. Balancing B, at each point on an
arbitrary surface represents an infinite number of con-
straints and generically leads to singular coil currents.
Fortunately, each resonant (B‘lﬁ/ Bg)mn that must be con-
trolled constrains the magnitude of only one spatial dis-
tribution of B, on the plasma surface, and it is only this
spatial distribution which must be nulled to eliminate the
island.

The motivation for this work was the design of the Na-
tional Compact Stellarator Experiment (NCSX) [10]. Fea-
tures of this design make the enforcement of good-flux
surfaces more difficult than in traditional stellarators [1].
NCSX is compact with a pronounced lack of geometric
symmetry and has a large shear and transform per period,
which produce multiple low-order resonances. In addi-
tion, NCSX is designed to operate with significant plasma
current and at high plasma pressure (above 4% of the
averaged magnetic energy), which means the rotational-
transform profile and the shape of the magnetic surfaces
are equilibrium dependent.

We found: (1) Adjustments to the coil shapes allow the
enforcement of good-flux surfaces while maintaining
optimized plasma and engineering properties of a parti-
cular NCSX equilibrium. (2) Coils obtained from healing
a single reference configuration actually support many
other optimized NCSX equilibria while maintaining
good-flux surfaces. The second result indicates the pri-
mary issue with the NCSX flux surfaces is coil design and
not the plasma equilibrium. The phenomenon of self-
healing implies that this result is not generic, but the
improved flux surfaces seen for a class of NCSX equilib-
ria builds confidence that the method has practical as well
as fundamental physical interest.

The free-boundary PIES code, which was used in the
study, finds solutions by iterating the MHD equilibrium
equations and has a representation of the magnetic field
that accommodates magnetic islands and chaotic field
lines. To suppress islands, the standard PIES algorithm is
augmented so the coil geometry is altered at each itera-
tion to cancel the resonant magnetic field components
produced by plasma currents. The adjustment of the coils
at each iteration allows the retention of the inherently
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nonlinear plasma response. To preserve the previous opti-
mization of the coils and the plasma, changes in the coil
geometry are constrained to preserve engineering con-
straints of minimum bend radius and coil-coil separation,
as well as the plasma constraint of ideal kink stability. As
the iterations continue, the coil geometry and the plasma
equilibrium simultaneously converge to an island-free,
stable plasma with buildable coils.

Method.—The total magnetic field is the sum of the
magnetic field produced by the plasma, Bp, and the mag-
netic field produced by the confining coils, B¢, which is a
function of a set of Fourier harmonics, & which describe
the coil geometry, at the nth PIES iteration

B" = B, + B(£"). )

The initial plasma state is provided by the VMEC code
[11], which imposes the artificial constraint that the
plasma has nested flux surfaces, and the initial coil ge-
ometry is provided by the COILOPT code [12]. The method
presented in this Letter removes the constraint of nested
surfaces and allows the VMEC initialization to relax into
an equilibrium, potentially with broken flux surfaces
(islands), while making adjustments to the coil set to
remove selected islands as they develop.

The PIES iterations solve for the plasma current J given
B and given pressure profile p

Vp=Jt1 X B 3)

A magnetic-differential equation B - V(J;/B) =V -J;
gives the parallel current which is solved using magnetic
coordinates [13], and the current profile enters as an
integration constant. PIES uses current profiles which are
consistent with an Ohm’s law with finite resistivity, thus
eliminating the J-function parallel currents. The PIES
code allows the field topology to break up into islands
and chaos. In the region interior to the islands, because of
thermal and particle diffusion and in the absence of
sources and sinks, the pressure is constant and thus the
magnetic-differential equation for the Pfirsch-Schliiter
currents need not be solved. Also, to be consistent with
Ohm’s and Faraday’s laws in steady state, the current
profile is flattened inside the island.

The plasma magnetic field is then solved, given J, and
blended to provide numerical stability:

J*1 =V X By, )
Br™!l = aB% + (1 — a)Bp. (5)

Typically, the blending parameter a = 0.99 for NCSX
style equilibria. The standard PIES algorithm makes no
changes to the coil geometry and iterates through
Egs. (3)—(5) to calculate the free-boundary equilibrium
for a given pressure profile and coil set.

The additional steps in the implementation of the coil
healing are as follows. The total magnetic field B is

B = Bi"! + Bo(&"). (6)
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We may consider B as a nearly integrable field and that
magnetic islands are caused by fields normal to and reso-
nant with rational rotational-transform flux surfaces of a
nearby integrable field.

A set of resonances that are to be suppressed is selected.
The selection is determined by the rotational-transform
profile. Islands associated with low-order rationals are
typically the largest, but where the shear is small, high-
order islands can easily overlap and result in chaotic field
lines. A set of toroidal surfaces matching the selected
resonances is constructed. Each such surface (a quadratic-
flux-minimizing surface [14]) may be considered as a
rational rotational-transform flux surface of an underly-
ing integrable field [15], with each surface passing di-
rectly through its associated island chain and containing
the stable and unstable periodic orbits. The construction
of the quadratic-flux-minimizing surfaces provides an
optimal magnetic coordinate system or, equivalently, an
optimal nearby integrable magnetic field, and in these
coordinates resonant perturbation harmonics are clearly
identified. The method is computationally efficient as the
quadratic-flux-minimizing surfaces are constructed ex-
actly and only where required — at the rational rotational-
transform surfaces where islands develop.

The amplitude of each of the N selected resonant
field harmonics, denoted {B;:i = 1, N}, is calculated by
Fourier decomposing the magnetic field normal to the
quadratic-flux-minimizing surface. The Fourier decom-
position is performed using an angle coordinate which
corresponds to a magnetic coordinate angle of the under-
lying integrable field on that surface.

The COILOPT [12] code provides a convenient Fourier
representation of the coil geometry and a set of M coil
harmonics {£;:j = 1, M} is systematically varied to set
B, = 0 using a Newton method. The coupling matrix,
VB{, j» is defined as the partial derivatives of the selected
resonant harmonics of the coil magnetic field normal to
the quadratic-flux-minimizing surface, which is updated
every PIES iteration, with respect to the chosen coil har-
monics and is calculated using finite differences. A multi-
dimensional Newton method is applied to find the coil
changes 8¢, that set B; = 0

~B; =) VB, - 8&". (7
J

This equation is solved for the 6¢; in a few iterations by
inverting the N X M matrix VB, ; using singular-value
decomposition [16] and the coil set is adjusted

gl = g1+ 8¢, @®)

at every PIES iteration, such that resonant components of
the combined plasma-coil field are eliminated. As the
iterations proceed, the coil geometry and the plasma
simultaneously converge to coil geometry-plasma solu-
tion with good-flux surfaces.
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To be “buildable,” the minimum coil curvature and
coil-coil separation, for example, of the coils must exceed
certain limits. Such constraints are calculated by the
COILOPT code and the initial coil set, described by £, is
satisfactory from an engineering perspective. The healing
algorithm is modified to preserve the minimum curvature
and coil-coil separation by adding to the set of resonant
fields to be eliminated the (appropriately weighted) dif-
ferences in minimum curvature and coil-separation of the
nth coil set, described by &”, from the initial coil set. This
constrains the island-eliminating coil variations to lie in
the null space of these measures of engineering accept-
ability. In a similar manner, the algorithm preserves kink
stability. The VMEC initialization is kink stable, and kink
stability is calculated with the TERPSICHORE code [17].

Application to NCSX.—The method is routinely ap-
plied to NCSX [10] candidate coil and plasma designs.
NCSX is a proposed proof-of-principle device with three
field periods, aspect ratio A = 4.4, major radius R =
1.4 m, and magnetic field B = 1.7 T. The stellarator
symmetric coil design consists of 18 modular coils (three
distinct coil types), 18 toroidal field coils, and six pairs
of poloidal field coils and some additional trim coils.
The plasma is designed to be quasiaxisymmetric to give
good transport and is stable to kink modes at 8 ~ 4%, but
is marginally unstable to infinite-n ballooning modes.
The rotational-transform profile has ¢ ~ 0.4 on axis,
maximum t ~ 0.66 near the edge, and ¢ ~ 0.65 at the
edge: including the low-order resonances t = 3/7, 3/6,
and 3/5. Note that the shear vanishes near the ¢t = 6/9
resonance.

Considering a candidate coil set and selecting the
(n,m)=(3,6),(3,5) islands to be suppressed, subject to
the constraint that the minimum coil curvatures, the coil-
coil separation, and the kink stability be preserved

1.2 1.4 1.6
R (m)

FIG. 1. Poincaré plot of the converged healed coil-plasma
field (upper) and for the original, unhealed coils after 180 stan-
dard PIES iterations (lower) for the NCSX candidate coil set
M45. The VMEC initialization boundary is shown as the thick
solid line.
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(9 constraints), and allowing some m=3,4,5,6,7,8
modular coil harmonics to vary (36 independent vari-
ables), a healed coil-plasma state is achieved. The
engineering measures are preserved and the plasma is
stable with respect to kink modes. Also, the plasma
retains quasiaxisymmetry and is stable to ballooning
modes n <45.

Several hundred iterations are required to approach
convergence in both the plasma field and the coil geome-
try. To confirm convergence, several hundred additional
standard PIES iterations are performed with the coil set
unchanged. A Poincaré plot of the final field is shown on
an up-down symmetric toroidal cross section in the upper
half of Fig. 1. The island content in the healed configura-
tion is negligible, though there is some resonant m = 18
deformation near the zero shear location and some high-
order (m = 10, 11, 12, and 14) island chains. For compari-
son, a Poincaré plot of the unhealed configuration is
shown after 180 standard PIES iterations in the lower half
of Fig. 1. For the unhealed case, there is a large m = 5
island and the configuration deteriorates into large re-
gions of chaos.

The maximum coil alteration is about 2 c¢m, which
comfortably exceeds manufacturing tolerances, but is
not so large that ““healing” significantly impacts other de-
sign concerns, such as diagnostic access. The coil har-
monics varied actually describe the toroidal variation of
the modular coils on a toroidal winding surface. The
calculation shown used 63 radial surfaces, 12 poloidal,
and 6 toroidal modes. Similar results have been obtained
using up to 93 radial surfaces and 20 poloidal modes.

Comments.—The flux-surface quality of the “healed”
equilibrium shows remarkable improvement compared to
the unhealed configuration. The coils have been described
with a filamentary model, and a finite thickness model of
the healed coils shows further improvement; in particu-
lar, the m = 18 deformation and the high-order islands
are reduced. To model a discharge evolution, we consid-
ered a sequence of equilibria with increasing plasma
pressure. Though islands may reappear as the configura-
tion departs from the healed configuration, the island
content in each of the equilibria with the healed coils is
much smaller than in the corresponding equilibrium with
the original coils.

In principle, in the limit of suppressing additional
islands, this approach can lead to nonaxisymmetric coil-
plasma configurations with integrable magnetic fields.
The procedure amounts to a stellarator design optimiza-
tion routine that for the first time provides a mechanism
for suppressing magnetic islands, while providing ideal

275003-4

stability and satisfying engineering constraints. In addi-
tion to the improvement in particle confinement asso-
ciated with good-flux surfaces, the construction of
integrable fields has implications for stellarator MHD
stability calculations, which are usually based on equi-
libria artificially constrained to have nested flux surfaces.
As the equilibria constructed using this method, and the
method presented in [9], relax the unphysical imposition
of nested surfaces, but nevertheless maintain integrabil-
ity by careful design, stability studies based on these
equilibria are expected to be more reliable.
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